
§2.8: UFDS AND NORMAL RINGS

DEFINITION: Let R be a domain. The normalzation of R is the integral closure of R in Frac(R). We
say that R is normal if it is equal to its normalization, i.e., if R is integrally closed in its fraction field.

PROPOSITION: If R is a UFD, then R is normal.

LEMMA: A domain is a UFD if and only if
(1) Every nonzero element has a factorization1 into irreducibles, and
(2) Every irreducible element generates a prime ideal.

THEOREM: If R is a UFD, then the polynomial ring R[X] is a UFD.

(1)(1) Use the results above to explain why K[X1, . . . , Xn] (with K a field) and Z[X1, . . . , Xn] are normal.

Because fields and Z are UFDs, so K[X1, . . . , Xn] and Z[X1, . . . , Xn] are UFDs, hence normal.

(2)(2) Prove the Proposition above.

Let k = a/b be in the fraction field of R written in lowest terms. Suppose that k is integral over
R and take an equation kn + r1k

n−1 + · · · + rn = 0. Plugging in and clearing denominators
gives an + r1a

n−1b + · · · + rnb
n = 0. Then an is a multiple of b, so any irreducible factor of

b is an irreducible factor of a by unique factorization. The only possibility is that b admits no
irreducible factors; i.e., b is a unit, so k ∈ R.

(3)(3) Let K be a module-finite field extension of Q. The ring of integers in K, sometimes denoted OK ,
is the integral closure of Z in K.
(a)(a) What is the ring of integers in Q(

√
2)?

(b)(b) For L = Q(
√
−3), show that 1+

√
−3

2
∈ OL. In particular, OL % Z[

√
−3].

(c)(c) Explain why OK is normal.
(d)(d) Explain why, if Z ⊆ OK is algebra-finite, then OK

∼= Zn as abelian groups for some n ∈ N.
(e)(e) Do we have a theorem that implies Z ⊆ OK is algebra-finite?

(a)(a) Z[
√
2].

(b)(b) If ω = 1+
√
−3

2
, note that ω2 = −1+1

√
−3

2
= ω − 1, so ω2 − ω + 1 = 0.

(c)(c) If k ∈ K is integral over OK , then k is integral over OK and hence over Z (by Corollary 2
from last time). Then by definition, k ∈ OK .

(d)(d) If Z ⊆ OK is algebra-finite, then since it is integral, it is also module-finite. OK is definitely
torsion free, since it’s contained in a field, so by the structure theorem for fg abelian groups,
it is isomorphic to a finite number of copies of Z.

(e)(e) Not yet!

(4) Discuss the proof of the Lemma above.

We show by induction on n, that for any element r ∈ R that can has an irreducible factoriza-
tion as a unit times a product on n irreducibles (counting repetitions), that any other irreducible

1i.e., for any r ∈ R, there exists a unit u and a finite (possibly empty) list of irreducibles a1, . . . , an such that r = ua1 · · · an.



factorization agrees with the given one up to associates and reordering. If r is a unit, then any
factorization only consists of units, since otherwise r is a divisible by prime element, contra-
dicting that it is a unit.

Say that p is an irreducible in the first factorization of r, so r = ps for some s. Then given any
irreducible factorization of r, p must divide some irreducible factor since (p) is prime, and by
definition, p must be associate to that irreducible. Then we can cancel p from both factorizations
and apply the induction hypothesis to s.

(5) Let K be a field, and R = K[X2, XY, Y 2] ⊆ K[X, Y ]. Prove2 that R is not a UFD, but R is normal.

This solution is embargoed.

(6) Prove the Theorem above. You might find it useful to recall the following:
GAUSS’ LEMMA: Let R be a UFD and let K be the fraction field of R.
(a) f ∈ R[X] is irreducible if and only if f is irreducible in K[X] and the coefficients of f have

no common factor.
(b) Let r ∈ R be irreducible, and f, g ∈ R[X]. If r divides every coefficient of fg, then either r

divides every coefficient of f , or r divides every coefficient of g.

(7) Let R be a normal domain, and s be an element of some domain S ⊇ R. Let K be the fraction field
of R. Show that if s is integral over R, then the minimal polynomial of s has all of its coefficients
in R.

2Hint: Use K[X,Y ] to your advantage.


