DEFINITION: Let $\phi : R \to S$ be a ring homomorphism.

- We say that ϕ is **algebra-finite**, or S is **algebra-finite** over R, if S is a finitely generated R-algebra.
- We say that ϕ is **module-finite**, or S is **module-finite** over R, if S is a finitely generated R-module.

One also often encounters the less self-explanatory terms finite type for algebra-finite, and finite for module-finite, but we will avoid these.

LEMMA: A module-finite map is algebra-finite. The converse is false.

DEFINITION: Let R be an A-algebra. We say that an element $r \in R$ is **integral** over A if r satisfies a monic polynomial with coefficients in A.

PROPOSITION: Let R be an A-algebra. If $r_1, \ldots, r_n \in R$ are integral over A, then $A[r_1, \ldots, r_n]$ is module-finite over A.

- (1) Algebra-finite vs module-finite: Let $\phi : A \to R$ be a ring homomorphism and $r_1, \ldots, r_n \in R$.
	- (a) Agree or disagree: an A-linear combination of r_1, \ldots, r_n is a special type of polynomial expression of r_1, \ldots, r_n with coefficients in A.
	- **(b)** Explain why $R = \sum_{i=1}^{n} Ar_i$ implies $R = A[r_1, \ldots, r_n]$. Explain why module-finite implies algebra-finite.
	- (c) Let $R = A[X]$ be a polynomial ring in one variable over A. Is the inclusion map $A \subseteq A[X]$ algebra-finite? Module-finite?
	- (d) Give an example of a map that is module-finite (and hence also algebra-finite).
	- (e) Give an example of a map that is not algebra-finite (and hence also not module-finite).

(a) Agree.

- (b) The first part follows from what you just agreed to.
- (c) Algebra-finite but not module-finite.
- (d) Possibilities include $\mathbb{Z} \subseteq \mathbb{Z}[\sqrt{2}]$, $\mathbb{R} \subseteq \mathbb{C}$
- (e) Possibilities include $\mathbb{Z} \subseteq \mathbb{Q}$, $K \subseteq K[X_1, X_2, \dots]$.
- (2) Integral elements: Use the definition of integral to determine whether each is integral or not.

(a) An indeterminate X in a polynomial ring $A[X]$, over A.

- (a) An indeterm
(b) $\sqrt[3]{2}$, over \mathbb{Z} .
- (c) $\frac{1}{2}$, over \mathbb{Z} .
	- (a) No: X satisfies no polynomial over A .
	- **(a)** No: A sausiles no polynomic
 (b) Yes: $\sqrt[3]{2}$ is a root of $T^3 2$.
- (c) No: given $T^n + a_1 T^{n-1} + \cdots + a_n = 0$ with $a_i \in \mathbb{Z}$, plugging in $T = 1/2$ and clearing denominators gives $1 + 2a_1 + \cdots + 2^n a_n = 0$, which is impossible.
- (3) Proof of Proposition: Let A be a ring.
	- (a) Let $f \in A[X]$ be monic, and let $T = A[X]/(f)$. Explain why T is module-finite over A. What is a generating set?
	- **(b)** Let $R = A[r]$ be an algebra generated by one element $r \in R$. Suppose that r satisfies a monic polynomial $f \in A[X]$. How is R related to the ring T as in part (a)? Must they be equal?
	- (c) Show that R as in (b) is module-finite over A. What is a generating set?
- (d) Let $S = A[r_1, \ldots, r_t]$ with $r_1, \ldots, r_t \in S$ integral over A. Use (c) and (4b) below to show that $A \rightarrow S$ is module-finite.
	- (a) We showed earlier that T is a free A-module with basis given by powers of $[X]$ of degree less than the top degree of f.
	- (b) R is a quotient of T, but could be smaller (a proper quotient). For example, take $R =$ $\mathbb{Z}[X]/(X^2,2X).$
	- (c) It is generates by the powers of $[X]$ of degree than the top degree of f.
	- (d) This follows from (c), 2(b), and induction.
- (4) Finiteness conditions and compositions: Let $R \subseteq S \subseteq T$ be rings.
	- (a) If $R \subseteq S$ and $S \subseteq T$ are algebra-finite, show¹ that the composition $R \subseteq T$ is algebra-finite.
	- (b) If $R \subseteq S$ and $S \subseteq T$ are module-finite, show² that the composition $R \subseteq T$ is module-finite.
		- (a) If $S = R[s_1, ..., s_m]$ and $T = S[t_1, ..., t_n]$. We claim that $T = R[s_1, ..., s_m, t_1, ..., t_n]$. Suppose that $T' \subseteq T$ is an R-subalgebra containing $s_1, \ldots, s_m, t_1, \ldots, t_n$. Since $s_1, \ldots, s_m \in T'$, we have $S \subseteq T'$ so T' is a S-subalgebra of T. But since $t_1, \ldots, t_n \in T'$ we then must have $T' = T$.
		- (b) If $S = \sum_i Ra_i$ and $T = \sum_j Sb_j$, we claim that $T = \sum_{i,j} Ra_i b_j$. Indeed, given $t \in T$, we can write $t = \sum_j s_j b_j$, and for each s_j we can write $s_j = \sum_i r_{i,j} a_i$, so $t = \sum_j (\sum_i r_{i,j} a_i) b_j$ is an *R*-linear combination of $a_i b_j$.
- (5) Power series rings:
	- (a) Let $A \rightarrow R$ be algebra-finite. Show that R is a countably-generated A-module.
	- (b) Let A be a ring and $R = A[[X]]$ be a power series ring over A. Show³ that R is not a countably generated A-module. Deduce that R is not algebra-finite over A. generated A-module. Deduce that R is not algebra-finite over A .
		- (a) If $R = A[X_1, \ldots, X_n]$, then R is a free A-module on basis given by monomials. This is a countable set, so R is a countably-generated A-module. In the general case of $A \rightarrow R$ be algebra-finite, R is a quotient of a polynomial ring in finitely many variable, so R is a countably-generated A-module.
		- (b) Suppose $R = \sum_{i=1}^{\infty} Af_i$ is countably generated. Write $[g]_{\leq j}$ for the sum of terms in g of degree at most j and similar things. We claim that there is some $g \in R$ such that $[g]_{\leq n^2} \notin \sum_{i=1}^n A[f_i]_{\leq n^2}$. We construct such g recursively. Suppose we have such a g that satisfies the condition some n. We need to show that there are coefficients $a_{n^2+1}, \ldots, a_{(n+1)^2}$ such that $[g]_{\leq (n+1)^2} \notin$ $\sum_{i=1}^{n+1} A[f_i]_{\leq (n+1)^2}$; we will choose these coefficients with the stronger property that $[g]_{>n\&\leq (n+1)^2} \notin \sum_{i=1}^{n+1} A[f_i]_{>n\&\leq (n+1)^2}$. To do this, just note that $\sum_{i=1}^{n+1} A[f_i]_{>n\&\leq (n+1)^2}$ is a submodule of A^{2n+1} with $n+1$ generators, so is a proper submodule; choose any element of the complement. Thus there exists a g as claimed.

¹Hint: If $S = R[s_1, \ldots, s_m]$ and $T = S[t_1, \ldots, t_n]$, apply the definition of "algebra generated by" to $R[s_1, \ldots, s_m, t_1, \ldots, t_n] \subseteq T$. Why must the LHS contain S ? After that, why must it contain T ?

²Hint: If $S = \sum_i Rs_i$ and $T = \sum_j St_j$, use the "linear combinations" characterization of module generators to show $T = \sum_{i,j} Rs_i t_j.$

³Hint: Write $[g]_{\leq j}$ for the sum of terms in g of degree at most j. Suppose $R = \sum_{i=1}^{\infty} Af_i$, and construct $g \in R$ such that $[g]_{\leq n^2} \notin \sum_{i=1}^n A[f_i]_{\leq n^2}.$

But then $g \notin \sum_{i=1}^{\infty} Af_i$, since if it were, g would be an A-linear combination of finitely many such f_i , so $g \in \sum_{i=1}^N Af_i$ for some N, and hence $[g]_{\leq N^2} \in \sum_{i=1}^N A[f_i]_{\leq N^2}$, a contradiction.

It follows from (1) that R is not a finitely-generated A -algebra.

- (6) Let $R \subset S \subset T$ be rings.
	- (a) If $R \subseteq T$ is algebra-finite, must $S \subseteq T$ be? What about $R \subseteq S$?
	- (b) If $R \subseteq T$ is module-finite, must $S \subseteq T$ be? What⁴ about $R \subseteq S$?
		- (a) $S \subseteq T$ must be, as following immediately from the definition. $R \subseteq S$ need not, e.g., for $K[X] \subseteq K[X, XY, XY^2, \cdots] \subseteq K[X, Y].$
		- (b) $S \subseteq T$ must be, as following immediately from the definition. $R \subseteq S$ need not, e.g., for $K[X_1, X_2, \dots] \subseteq K[X_1, X_2, \dots] \ltimes (X_1, X_2, \dots) \subseteq K[X_1, X_2, \dots] \ltimes K[X_1, X_2, \dots].$
- (7) Let R be a ring, and M be an R-module. The **Nagata idealization** of M in R, denoted $R \ltimes M$, is the ring that
	- as a set and an additive group is just $R \times M = \{(r, m) | r \in R, m \in M\}$, and
	- has multiplication $(r, m)(s, n) = (rs, rn + sm)$.

Convince yourself that $R \ltimes M$ is an R-algebra. Show that $R \subseteq R \ltimes M$ is module-finite if and only if M is a finitely generated R -module.

⁴Hint: Use a problem below.