
§2.10: NOETHERIAN MODULES

DEFINITION: A module is Noetherian if every ascending chain of submodules M1 ⊆ M2 ⊆ M3 ⊆ · · ·
eventually stabilizes: i.e., there is some N such that Mn = MN for all n ≥ N .

THEOREM: If R is a Noetherian ring, then an R-module M is Noetherian if and only M is finitely generated.

COROLLARY: If R is a Noetherian ring, then a submodule of a finitely generated R-module is finitely
generated.

LEMMA: Let M be an R-module and N ⊆ M a submodule. Let L,L′ be two more submodules of M .
Then L = L′ if and only if L ∩N = L′ ∩N and L+N

N
= L′+N

N
.

(1)(1) Equivalences for Noetherianity.
(a)(a) Explain why M is Noetherian if and only if every submodule of M is finitely generated.
(b)(b) Explain why M is Noetherian if and only if every nonempty collection of submodules has a maxi-

mal element.

(a)(a) Analogous to what we did with ideals.
(b)(b) Analogous to what we did with ideals.

(2)(2) Submodules and quotient modules: Let N ⊆M .
(a)(a) Show that if M is a Noetherian R-module, then N is a Noetherian R-module.
(b)(b) Show that if M is a Noetherian R-module, then M/N is a Noetherian R-module.
(c)(c) Use the Lemma above to show that if N and M/N are Noetherian R-modules, then M is a Noe-

therian R-module.

(a)(a) A chain of submodules of N is a chain of submodules of M , so by hypothesis must stabilize.
(b)(b) The submodules of M/N are in containment-preserving bijection with the submodules of M

that contain N , so a chain of submodules of M/N must stabilize.
(c)(c) Suppose we have a chain of submodules Mi of M . By intersecting with N , we get a chain of

submodules of Mi ∩ N of N , which by hypothesis, must stabilize at some n = a. By taking
images in M/N , we get a chain of submodules Mi+N

N
of M/N that must stabilize at some

n = b. Then for n ≥ max{a, b} by the Lemma, we must have that the chain Mi stabilizes.

(3)(3) Proof of Theorem: Let R be a Noetherian ring.
(a)(a) Explain why R is a Noetherian R-module.
(b)(b) Show that Rn is a Noetherian R-module for every n.
(c)(c) Deduce the Theorem above.
(d)(d) Deduce the Corollary above.

(a)(a) The submodules of R are just the ideals of R.
(b)(b) There is a copy of Rn−1 in Rn (where the last coordinate is zero) with quotient R1, so it follows

by induction on n.
(c)(c) If M is Noetherian, then every submodule of M including M itself is finitely generated. Con-

versely, if M is finitely generated, then M is a quotient of Rn for some n, so it follows from
(3b) and (2b).

(d)(d) Follows from (3c) and (2a).

(4)(4) Proof of Hilbert Basis Theorem for R[X]: Let R be a Noetherian ring.



(a)(a) Let I be an ideal of R[X]. Given a nonzero element f ∈ R[X], set LT(f) to be the leading
coefficient1 of f and LT(0) = 0, and let LT(I) = {LT(f) | f ∈ I}. Is LT(I) an ideal of R?

(b)(b) Let f1, . . . , fn ∈ R[X] be such that LT(f1), . . . ,LT(fn) generate LT(I). Let N be the maximum of
the top degrees of fi. Show that every element of I can be written as

∑
i rifi+ g with ri, g ∈ R[X]

and the top degree of g ∈ I is less than N .
(c)(c) Write R[X]<N for the R-submodule of R[X] consisting of polynomials with top degree < N .

Show that I ∩R[X]<N is a finitely generated R-module.
(d)(d) Complete the proof of the Theorem.

(a)(a) Yes; we just check the definition.
(b)(b) We proceed by induction on top degree of f ∈ I . For f with top degree less than N , we just take

g = f and ri = 0. For f with top degree t ≥ N , write f = aX t + lower degree terms, and a =∑
i aiLT(fi). Then

∑
i aiX

t−nifi = aX t+ lower degree terms, so f ′ = f −
∑

i aiX
t−nifi ∈ I

is of lower degree. We can then write f ′ in the desired form by induction, and then the original
f as well.

(c)(c) I ∩ R[X]<N is an R-submodule of R[X]<N , which is generated by 1, X, . . . , XN−1, whence
finitely generated. Since R is Noetherian, this submodule is also Noetherian.

(d)(d) Fix an R-module generating set g1, . . . , gs for I ∩ R[X]<N . We claim that I =
(f1, . . . , fn, g1, . . . , gs). By construction we have ⊇. Then, given f ∈ I , we can write
f =

∑
i rifi + g and g =

∑
j ajgj with aj ∈ R, so f ∈ (f1, . . . , fn, g1, . . . , gs). Thus, I

is finitely generated.

(5) Proof of Hilbert Basis Theorem for RJXK: How can you modify the Proof of Hilbert Basis Theorem
for R[X] to work in the power series case? Make it happen!

We use lowest degree terms instead. Define LT(f) to be the bottom coefficient of f . Proceeding
similarly, we can show that if f1, . . . , fn ∈ RJXK are such that LT(f1), . . . ,LT(fn) generate LT(I),
then and f ∈ I can be written as

∑
i rifi + g with g a polynomial in X of top degree less than N ,

and continue as in the polynomial case.

(6) Prove the Lemma.

(7) Noetherianity and module-finite inclusions: Let R ⊆ S be module-finite.
(a) Without using the Hilbert Basis Theorem, show that is R is Noetherian, then S is Noetherian.
(b) EAKIN-NAGATA THEOREM: Show that if S is Noetherian, then R is Noetherian.

1That is, if f =
∑

i aiX
i and k = max{i | ai 6= 0}, then LT(f) = ak.


