DEFINITION: A module is **Noetherian** if every ascending chain of submodules $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ eventually stabilizes: i.e., there is some N such that $M_n = M_N$ for all $n \ge N$.

THEOREM: If R is a Noetherian ring, then an R-module M is Noetherian if and only M is finitely generated.

COROLLARY: If R is a Noetherian ring, then a submodule of a finitely generated R-module is finitely generated.

LEMMA: Let M be an R-module and $N \subseteq M$ a submodule. Let L, L' be two more submodules of M. Then L = L' if and only if $L \cap N = L' \cap N$ and $\frac{L+N}{N} = \frac{L'+N}{N}$.

- (1) Equivalences for Noetherianity.
 - (a) Explain why M is Noetherian if and only if every submodule of M is finitely generated.
 - (b) Explain why M is Noetherian if and only if every nonempty collection of submodules has a maximal element.
- (2) Submodules and quotient modules: Let $N \subseteq M$.
 - (a) Show that if M is a Noetherian R-module, then N is a Noetherian R-module.
 - (b) Show that if M is a Noetherian R-module, then M/N is a Noetherian R-module.
 - (c) Use the Lemma above to show that if N and M/N are Noetherian R-modules, then M is a Noetherian R-module.
- (3) Proof of Theorem: Let R be a Noetherian ring.
 - (a) Explain why R is a Noetherian R-module.
 - **(b)** Show that R^n is a Noetherian *R*-module for every *n*.
 - (c) Deduce the Theorem above.
 - (d) Deduce the Corollary above.
- (4) Proof of Hilbert Basis Theorem for R[X]: Let R be a Noetherian ring.
 - (a) Let I be an ideal of R[X]. Given a nonzero element $f \in R[X]$, set LT(f) to be the leading coefficient¹ of f and LT(0) = 0, and let $LT(I) = \{LT(f) \mid f \in I\}$. Is LT(I) an ideal of R?
 - **(b)** Let $f_1, \ldots, f_n \in R[X]$ be such that $LT(f_1), \ldots, LT(f_n)$ generate LT(I). Let N be the maximum of the top degrees of f_i . Show that every element of I can be written as $\sum_i r_i f_i + g$ with $r_i, g \in R[X]$ and the top degree of $g \in I$ is less than N.
 - (c) Write $R[X]_{<N}$ for the *R*-submodule of R[X] consisting of polynomials with top degree < N. Show that $I \cap R[X]_{<N}$ is a finitely generated *R*-module.
 - (d) Complete the proof of the Theorem.
- (5) Proof of Hilbert Basis Theorem for R[X]: How can you modify the Proof of Hilbert Basis Theorem for R[X] to work in the power series case? Make it happen!
- (6) Prove the Lemma.
- (7) Noetherianity and module-finite inclusions: Let $R \subseteq S$ be module-finite.
 - (a) Without using the Hilbert Basis Theorem, show that is R is Noetherian, then S is Noetherian.
 - (b) EAKIN-NAGATA THEOREM: Show that if S is Noetherian, then R is Noetherian.