Recall that given matrices A and B, the matrix product AB consists of linear combinations, namely: Each column of AB is a linear combinations of the columns of A, with coefficients/weights coming from the corresponding columns of B. That is,

$$
(\text{col } j \text{ of } AB) = \sum_{i=1}^{t} b_{ij} \cdot (\text{col } i \text{ of } A);
$$

note that b_{1j}, \ldots, b_{tj} is the *j*-th column of *B*.

PROPERTIES OF det: For a ring R, the determinant is a function det : $\text{Mat}_{n\times n}(R) \to R$ such that:

- (1) det is a polynomial expression of the entries of A of degree n .
- (2) det is a linear function of each column.
- (3) $det(A) = 0$ if the columns are linearly dependent.
- (4) det $(AB) = \det(A) \det(B)$.
- (5) det can be computed by Laplace expansion along a row/column.
- (6) det(A) = det(A^{tr}).
- (7) If $\phi: R \to S$ is a ring homomorphism, and $\phi(A)$ is the matrix obtained from A by applying ϕ to each entry, then $\det(\phi(A)) = \phi(\det(A)).$

ADJOINT TRICK: For an $n \times n$ matrix A over R,

$$
\det(A)\mathbb{1}_n = A^{\text{adj}}A = A A^{\text{adj}},
$$

where $(A^{adj})_{ij} = (-1)^{i+j} \det(\text{matrix obtained from } A \text{ by removing row } j \text{ and column } i).$

EIGENVECTOR TRICK: Let A be an $n \times n$ matrix, $v \in R^n$, and $r \in R$. If $Av = rv$, then $\det(r1\!\!1_n - A)v = 0$. Likewise, if instead v is a row vector and $vA = rv$, then $\det(r1\!\!1_n - A)v = 0$.

DEFINITION: Given an $n \times m$ matrix A and $1 \le t \le \min\{m, n\}$ the **ideal of** $t \times t$ **minors of** A, denoted $I_t(A)$, is the ideal generated by the determinants of all $t \times t$ submatrices of A given by choosing t rows and t columns. For $t = 0$, we set $I_0(A) = R$ and for $t > \min\{m, n\}$ we set $I_t(A) = 0$.

LEMMA: If A is an $n \times m$ matrix, B is an $m \times \ell$ matrix, and $t \le 1$, then

- $I_{t+1}(A) \subseteq I_t(A)$
- $I_t(AB) \subseteq I_t(A) \cap I_t(B)$.

PROPOSITION: Let M be a finitely presented module. Suppose that A is an $n \times m$ presentation matrix for M. Then $I_n(A)M = 0$. Conversely, if $fM = 0$, then $f^n \in I_n(A)$.

(1) Let M be a module. Suppose that m_1, \ldots, m_n is a generating set with corresponding presentation matrix A. Which of the following is true:

$$
A\begin{bmatrix}m_1\\ \vdots\\ m_n\end{bmatrix}\stackrel{?}{=}0 \qquad \qquad [m_1 \ \cdots \ m_n] \ A \stackrel{?}{=} 0.
$$

Explain your answer in terms of the recollection on matrix multiplication above.

- (2) Eigenvector Trick:
	- (a) What familiar fact/facts from linear algebra (over fields) is/are related to the Eigenvector Trick?
	- (b) Use the Adjoint Trick to prove the Eigenvector Trick.

(a) Over a field, an eigenvalue of a matrix is a root of the characteristic polynomial. (b) If $Av = rv$, then $(A - r\mathbb{1}_n)v = 0$, so multiply by $(A - r\mathbb{1}_n)^{\text{adj}}$ to get $\det(A - r\mathbb{1}_n)v =$ $(A - r \mathbb{1}_n)^{\text{adj}} (A - r \mathbb{1}_n)v = 0$. Likewise on the other side.

(3) Show that a square matrix over a ring R is invertible if and only if its determinant is a unit.

If $AB = \mathbb{I}_n$, then $\det(A) \det(B) = \det(\mathbb{I}_n) = 1$, so $\det(A)$ is a unit. On the other hand, if $\det(A)$ is a unit, then $B = \det(A)^{-1} A^{adj}$ is an inverse of A by the adjoint trick.

- (4) Proof of Proposition:
	- (a) First consider the case $m = n$. Show that $\det(A)$ kills each generator m_i , and conclude that $I_n(A)M = 0.$
	- **(b)** Now consider the case $n \leq m$. Show that for any $n \times n$ submatrix A' of A that $\det(A^t)M = 0$, and conclude that $I_n(A)M = 0$. What's the deal when $m < n$?
	- (c) For the "conversely" statement, show that if $fM = 0$ then there is some matrix B such that $AB = f\mathbb{1}_n$, and deduce that $f \in I_n(A)^n$.
		- (a) Since A is a presentation matrix for M, with the corresponding generating set m_1, \ldots, m_n , we have $[m_1 \dots m_n] A = 0$. By the adjoint trick, $\det(A) [m_1 \dots m_n] = 0$, so $\det(A)$ kills each generator of M. Thus, $\det(A)$ kills M. By definition $I_n(A) = (\det(A)),$ so we are done.
		- **(b)** Suppose $n \leq m$ and fix m columns of A to form an $n \times n$ submatrix A'. The columns of A' are still relations on m_1, \ldots, m_n , so the same argument shows that $\det(A')$ kills M. Now, by definition, $I_n(A)$ is generated by the determinants of the submatrices A' , so $I_n(A)M = 0.$
			- When $m < n$, $I_n(A) = 0$, which very much kills M.
		- (c) If $fM = 0$, then the vector with f in the *i*th entry and zeroes elsewhere is a relation on the generators, so by definition of presentation matrix, this vector is a linear combination of the columns of A. Thus each column $f1_n$ is a linear combination of the columns of A, which means that we can write $f1_n = AB$ for some matrix B following the discussion above. By the Lemma, we have $f^n = \det(f \mathbb{1}_n) \in I_n(AB) \subseteq I_n(A)$. This completes the proof.

(5) Prove the Lemma above.

The first statement follows from Laplace expansion. For the second, it suffices to show that the determinant of any $t \times t$ submatrix of AB is a linear combination of determinants of $t \times t$ submatrices of A; the claim for B follows by applying transposes. We can restrict to the relevant rows of A and columns of B, so we can assume that A is $t \times n$ and B is $n \times t$ for some $n \geq t$. Then AB is a matrix whose columns are linear combinations of the columns of A. Then using linearity of det in each column, we can write $\det(AB)$ as a linear combination of the determinants of matrices with columns from A, which shown the claim.

(6) Prove¹ FITTING's LEMMA: If A and B are presentation matrices for the same R-module M of size $n \times m$ and $n' \times m'$ (respectively), and $t \ge 0$, then $I_{n-t}(A) = I_{n'-t}(B)$.

¹Hint: First consider the case when the two presentations have the same generating sets, but different generating sets for the relations. Reduce to the case where $B = [A|v]$ for a single column v.