
§1.3: ALGEBRAS

DEFINITION: Let A be a ring. An A-algebra is a ring R equipped with a ring homomorphism
φ : A→ R; we call φ the structure morphism of the algebra1. A homomorphism of A-algebras
is a ring homomorphism that is compatible with the structure morphisms; i.e., if φ : A → R and
ψ : A→ S are A-algebras, then α : R→ S is an A-algebra homomorphism if α ◦ φ = ψ.

UNIVERSAL PROPERTY OF POLYNOMIAL RINGS: Let2 A be a ring, and T = A[X1, . . . , Xn] be a
polynomial ring. For any A-algebra R, and any collection of elements r1, . . . , rn ∈ R, there is a
unique A-algebra homomorphism α : T → R such that α(Xi) = ri.

DEFINITION: Let A be a ring, and R be an A-algebra. Let S be a subset of R. The subalgebra
generated by S, denoted A[S], is the smallest A-subalgebra of R containing S. Equivalently3,

A[r1, . . . , rn] =

{∑
finite

ard11 · · · rdnn | a ∈ φ(A)

}
.

DEFINITION: Let R be an A-algebra. Let r1, . . . , rn ∈ R. The ideal of A-algebraic relations on
r1, . . . , rn is the set of polynomials f(X1, . . . , Xn) ∈ A[X1, . . . , Xn] such that f(r1, . . . , rn) = 0 in
R. Equivalently, the ideal of A-algebraic relations on r1, . . . , rn is the kernel of the homomorphism
α : A[X1, . . . , Xn]→ R given by α(Xi) = ri. We say that a set of elements in an A-algebra is
algebraically independent over A if it has no nonzero A-algebraic relations.

DEFINITION: A presentation of an A-algebra R consists of a set of generators r1, . . . , rn of R as an
A-algebra and a set of generators f1, . . . , fm ∈ A[X1, . . . , Xn] for the ideal of A-algebraic relations
on r1, . . . , rn. We call f1, . . . , fm a set of defining relations for R as an A-algebra.

PROPOSITION: If R is an A-algebra, and f1, . . . , fm is a set of defining relations for R as an
A-algebra, then R ∼= A[X1, . . . , Xn]/(f1, . . . , fm).

(1)(1) Let R be an A-algebra and r1, . . . , rn ∈ R.
(a)(a) Discuss why the equivalent characterizations in the definition ofA[r1, . . . , rn] are equivalent.
(b)(b) Explain whyA[r1, . . . , rn] is the image of theA-algebra homomorphism α : A[X1, . . . , Xn]→ R

such that α(Xi) = ri.
(c)(c) Suppose that R = A[r1, . . . , rn] and let f1, . . . , fm be a set of generators for the kernel of

the map α. Explain why R ∼= A[X1, . . . , Xn]/(f1, . . . , fm), i.e., why the Proposition above
is true.

(d)(d) Suppose that R is generated as an A-algebra by a set S. Let I be an ideal of R. Explain why
R/I is generated as an A-algebra by the image of S in R/I .

(e)(e) Let R = A[X1, . . . , Xn]/(f1, . . . , fm), where A[X1, . . . , Xn] is a polynomial ring over A.
Find a presentation for R.

1Note: the same R with different φ’s yield different A-algebras. Despite this we often say “Let R be an A-algebra” without
naming the structure morphism.

2This is equally valid for polynomial rings in infinitely many variables T = A[Xλ | λ ∈ Λ] with a tuple of elements of
{rλ}λ∈Λ in R in bijection with the variable set. I just wrote this with finitely many variables to keep the notation for getting
too overwhelming.

3Again written with a finite set just for convenience.



(a)(a) Clearly im(α) ⊆ R is an A-subalgebra that contains r1, . . . , rn, so A[r1, . . . , rn] ⊆
im(α). On the other hand, since r1, . . . , rn ∈ A[r1, . . . , rn], we have α(Xi) ∈
A[r1, . . . , rn], so we can consider α as an A-algebra homomorphism from
A[X1, . . . , Xn]→ A[r1, . . . , rn], and hence im(α) ⊆ A[r1, . . . , rn].

(b)(b) This is just another way of thinking about im(α): α(
∑
aiX

i1
1 · · ·X in

n ) =∑
φ(ai)r

i1
1 · · · rinn .

(c)(c) This is just the First Isomorphism Theorem applied along with (a).
(d)(d) If K[{Xλ}] → R where the variables map to the elements of S is surjective, then com-

posing with the quotient map gives a surjection K[{Xλ}] → R → R/I where the
variables map to the images of elements of S.

(e)(e) R is generated by [X1], . . . , [Xn], with defining relations f1, . . . , fm.

(2)(2) Presentations of some subrings:
(a)(a) Consider the Z-subalgebra of C generated by

√
2. Write the notation for this ring. Is there a

more compact description of the set of elements in this ring? Find a presentation.
(b)(b) Same as (a) with 3

√
2 instead of

√
2.

(c)(c) Let K be a field, and T = K[X, Y ]. Come up with a concrete description of the ring
R = K[X2, XY, Y 2] ⊆ T , (i.e., describe in simple terms which polynomials are elements
of R), and give a presentation as a K-algebra.

(a)(a) Z[
√
2] = {a+ b

√
2 | a, b ∈ Z} ∼= Z[X]/(X2 − 2)

(b)(b) Z[ 3
√
2] = {a+ b 3

√
2 + c 3

√
4 | a, b, c ∈ Z} ∼= Z[X]/(X3 − 2).

(c)(c) K[X2, XY, Y 2] is the collection of polynomials that only have even degree terms. We
computed the kernel of the presenting map last time, in slightly different words and
letters, and saw that the kernel is generated by X2

2 −X1X3.

(3)(3) Infinitely generated algebras:
(a)(a) Show that Q = Z[1/p | p is a prime number].
(b)(b) True or false: It is a direct consequence of the conclusion of (a) and the fact that there are

infinitely many primes that Q is not a finitely generated Z-algebra.
(c)(c) Given p1, . . . , pm prime numbers, describe the elements of Z[1/p1, . . . , 1/pm] in terms of

their prime factorizations. Can you ever have Z[1/p1, . . . , 1/pm] = Q for a finite set of
primes?

(d)(d) Show that Q is not a finitely generated Z-algebra.
(e) Show that, for a field K, the algebra K[X,XY,XY 2, XY 3, . . . ] ⊆ K[X, Y ] is not a finitely

generated K-algebra.
(f) Show that, for a field K, the algebra K[X, Y/X, Y/X2, Y/X3, . . . ] ⊆ K(X, Y ) is not a

finitely generated K-algebra.

(a)(a) The ⊇ containment is clear. For the other, take a/b ∈ Q, and write b = pe11 · · · , penn .
Then a/b = a(1/p1)

e1 · · · (1/pn)en exhibits a/b in the right hand side.
(b)(b) False! There could be a different finite generating set.
(c)(c) An element of Z[1/p1, . . . , 1/pm] can be written as

∑
α aα(1/p1)

α1 · · · (1/pm)αm so
has a denominator that is a product of powers of pi’s. This can never equal Q, since
1/(p1 · · · pm+1) can’t be written in this form: if so, and in lowest terms with numerator



a, after clearing denominators we would have pα1
1 · · · pαn

n = (p1 · · · pm + 1)a, which
contradicts the expression in lowest terms.

(d)(d) If Q = Z[a1/b1, . . . , an/bn] (in lowest terms) let p1, . . . , pm be the prime factors of
b1, . . . , bn. Then Z[a1/b1, . . . , an/bn] ⊆ Z[1/p1, . . . , 1/pm], so Z[1/p1, . . . , 1/pm] = Q
contradicting what we just showed.

(e) Suppose otherwise that K[X,XY,XY 2, XY 3, . . . ] = K[f1, . . . , fn]. Since each fi
is a polynomial expression of X,XY,XY 2, XY 3, . . . , and there are finitely many
XY j that appear in (fixed expressions for) each of the finitely many fi, we have
K[X,XY,XY 2, XY 3, . . . ] ⊆ K[f1, . . . , fn] ⊆ K[X,XY, . . . , XY m] for some m,
and equality holds for this same m. We claim that XY m+1 /∈ K[X,XY, . . . , XY m],
which will yield the desired contradiction. Indeed, one can see that every monomial in
K[X,XY, . . . , XY m] has its y-exponent is less than or equal to m times its x-exponent,
which is not true of XY m+1. This is the desired contradiction.

(f) Similar to the previous.

(4) More algebras:
(a) Give two different nonisomorphic C[X]-algebra structures on C.
(b) Find a C-algebra generating set for the ring of polynomials in C[X, Y ] that only have terms

whose total degree (X-exponent plus Y -exponent) is a multiple of three (e.g.,X3+πX5Y +5
is in while X3 + πX4Y + 5 is out).

(c) Find a C-algebra presentation for C× C.

(a) We can write C ∼= C[X]/(X) or C ∼= C[X]/(X − 1), for example. These are not
isomorphic as C[X]-algebras, since such a morphism would send [0] to [0] and [X] to
[X], but [X] = [0] in C[X]/(X) while [X] = [1] in C[X]/(X − 1).

(b) The set X3, X2Y,XY 2, Y 3 works. We can write any polynomial in this ring as a sum
of monomials of total degree three. From such a monomial, we can factor out powers
of X3 and Y 3 until we get either a constant or X2Y , or XY 2. Then putting everything
back together, we get that any polynomial in our ring is a polynomial expression in the
four things we named.

(c) We need a generator for (1, 0); then (0, 1) comes for free as 1 − (1, 0), and we’re set
on generators. Let’s map X to (1, 0) for our presentation. Then X(1 − X) maps to
(1, 0)(0, 1) = 0 so this is in the kernel; one can show with a division argument along the
lines of many we’ve discussed that this generates the kernel.

(5) Let K be a field. Describe which elements are in the K-algebra K[X,X−1] ⊆ K(X), and
find an element of K(X) not in K[X,X−1]. Then compute4 a presentation for K[X,X−1] as a
K-algebra.

The elements of K[X,X−1] are rational functions that can be written with a power of X as a
denominator. The rational function 1/(X − 1) is not in this algebra.

We claim that K[X,X−1] ∼= K[X1, X2]/(X1X2−1). Clearly X1X2−1 is a relation on X
and X−1. If it does not generate, take a relation not in the ideal among which has lowest X2-
degree. Let f(X1, X2) = fn(X1)X

n
2 +fn−1(X1)X

n−1
2 +· · ·+f0(X1) be an algebraic relation,

4Hint: Note that Division does not apply. SayX1 7→ X andX2 7→ Y . Show that the topX2-degree coefficient of an algebraic
relation is a multiple of X1, and use this to set an induction on the top X2-degree.



and consider the topX2-degree coefficient fn(X1) of f . Note that fn is a multiple ofX1 since,
mapping X1 7→ X and X2 7→ X−1, we get fn(X)X−n+fn−1(X)X−n+1 + · · ·+f0(X) = 0,
so fn(X) = X(−fn−1(X)−Xfn−2(X)− · · · −Xnf0(X)). Write fn = X1f

′
n. Then

f(X1, X2) = fn(X1)X
n
2 + fn−1(X1)X

n−1
2 + · · ·+ f0(X1)

= X1f
′
n(X1)X

n
2 + fn−1(X1)X

n−1
2 + · · ·+ f0(X1)

= (X1X2 − 1)f ′n(X1)X
n−1
2 + (f ′n(X1) + fn−1)X

n−1
2 + · · ·+ f0(X1).

Subtracting off a multiple ofX1X2−1, we obtain a relation of lowerX2-degree, contradicting
the choice of our relation, and hence the existence of a relation that is not a multiple of
X1X2 − 1.

(6) Can you guess defining relations for the ring in (4b)? Can you prove your guess?

Since X3, X2Y,XY 2, Y 3 ∈ R, we have K[X3, X2Y,XY 2, Y 3] ⊆ R. To show equality,
note that we can write f ∈ R as a sum of monomials of degree a multiple of three, so it
suffices to show that any such monomial is in the algebra generated by X3, X2Y,XY 2, Y 3.
GivenX iY j , if i ≥ 3 or j ≥ 3, we can writeX iY j = X3µ or Y 3µwith µ a smaller monomial
of degree a multiple of three. Continuing like so, we can assume i, j < 3, in which case we
must have X2Y or XY 2. Thus, K[X3, X2Y,XY 2, Y 3] = R.

Now we compute the ideal of relations. We can check directly that each relation is in
the defining ideal. To see that they generate, we show that any polynomial in the kernel
of the presenting map is equivalent to zero modulo the ideal generated by the given three.
Write T = X1, U = X2, V = X3,W = Y 3. Given a relation F , we think of it as a
polynomial in V . We can use division via V 2 − UW to get rid of the V ≥2 terms, and the
other relations to rewrite the coefficient of the V 1 term as a polynomial in W alone, so
F ≡ f1(W )V + f0(T, U,W ). Then we have f1(Y

3)XY 2 + f0(X
3, X2Y, Y 3) = 0. The

first term only produces Y 1-terms, while the second produces only other powers of Y , so the
two parts must be zero. This implies that f1 is the zero polynomial, and that f0 is a relation
on X3, X2Y, Y 3. A similar division argument shows that any polynomial in T, U,W that
vanishes upon mapping T 7→ X3, U 7→ X2Y , W 7→ Y 3 is a multiple of U3 − T 2W , but
U3 − T 2W = U(U2 − TV )− T (TW − UV ). This completes the proof.


