
§1.2: IDEALS

DEFINITION: Let S be a subset of a ring R. The ideal generated by S, denoted (S), is the smallest ideal
containing S. Equivalently,

(S) =
{∑

risi | ri ∈ R, si ∈ S
}

is the set of R-linear combinations1 of elements of S.

We say that S generates an ideal I if (S) = I .

DEFINITION: Let I, J be ideals of a ring R. The following are ideals:
• IJ := (ab | a ∈ I, b ∈ J).
• In := I · I · · · I︸ ︷︷ ︸

n times

= (a1 · · · an | ai ∈ I) for n ≥ 1.

• I + J := {a+ b | a ∈ I, b ∈ J} = (I ∪ J).
• rI := (r)I = {ra | a ∈ I} for r ∈ R.
• I : J := {r ∈ R | rJ ⊆ I}.

DEFINITION: Let I be an ideal in a ring R. The radical of I is
√
I := {f ∈ R | fn ∈ I for some n ≥ 1}.

An ideal I is radical if I =
√
I .

DIVISION ALGORITHM: Let A be a ring, and R = A[X] be a polynomial ring. Let g ∈ R be a monic
polynomial; i.e., the leading coefficient of f is a unit. Then for any f ∈ R, there exist unique polynomials
q, r ∈ R such that f = gq + r and the top degree of r is less than the top degree of g.

(1)(1) Briefly discuss why the two characterizations of (S) in Definition 2.1 are equal.

The set of linear combinations of elements of S is an ideal:
• 0 = 0s1 (we also consider 0 to be the empty combination);
• given two linear combinations, by including zero coefficients, we can assume our combina-

tions involve the same elements of S, and then
∑

i aisi +
∑

i bisi =
∑

i(ai + bi)si;
• r(

∑
i aisi) =

∑
i raisi.

Any ideal that contains S must contain all of the linear combinations of S, using the definition of
ideal. These two facts mean that the set of linear combinations is the smallest ideal containing S.

(2)(2) Finding generating sets for ideals: Let S be a subset of a ring R, and I an ideal.
(a)(a) To show that (S) = I , which containment do you think is easier to verify? How would you check?
(b)(b) To show that (S) = I given (S) ⊆ I , explain why it suffices to show that I/(S) = 0 in R/(S);

i.e., that every element of I is equivalent to 0 modulo S.
(c)(c) Let K be a field, R = K[U, V,W ] and S = K[X, Y ] be polynomial rings. Let φ : R→ S be the

ring homomorphism that is constant on K, and maps U 7→ X2, V 7→ XY,W 7→ Y 2. Show that
the kernel φ is generated by V 2 − UW as follows:
• Show that (V 2 − UW ) ⊆ ker(φ).
• Think of R as K[U,W ][V ]. Given F ∈ ker(φ), use the Division Algorithm to show that
F ≡ F1V + F0 modulo (V 2−UW ) for some F1, F0 ∈ K[U,W ] with F1V +F0 ∈ ker(φ).
• Use φ(F1V + F0) = 0 to show that F1 = F0 = 0, and conclude that F ∈ ker(φ).

(a)(a) Showing (S) ⊆ I is the easier containment: it suffices to show that S ⊆ I .
(b)(b) This follows from the Second Isomorphism Theorem.

1Linear combinations always means finite linear combinations: the axioms of a ring can only make sense of finite sums.



(c)(c) • We check φ(V 2 −UW ) = (XY )2 −X2Y 2 = 0, so V 2 −UW ∈ ker(φ). This implies
(V 2 − UW ) ⊆ ker(φ).
• By Division, we have F = (V 2−UW )Q+R, with the top degree (in V ) of R at most
1. Then F ≡ R = F1V + F0 modulo (V 2 − UW ). Since F, V 2 − UW ∈ ker(φ), we
must have F1V + F0 ∈ ker(φ).
• We have 0 = φ(F1V + F0) = F1(X

2, Y 2)XY + F0(X
2, Y 2). The F1(X

2, Y 2)XY
terms only have monomials whose X-degree is odd, and the F0(X

2, Y 2) terms only
have monomials whose X-degree is even, so none can cancel with each other. This
means that F1(X

2, Y 2) = 0 and F0(X
2, Y 2) = 0, so F1(U,W ) = F0(U,W ) = 0.

Thus, F ≡ 0 modulo (V 2 − UW ), and as above, we conclude ker(φ) = (V 2 − UW ).

(3)(3) Radical ideals:
(a)(a) Fill in the blanks and convince yourself:

• R/I is a field ⇐⇒ I is
• R/I is a domain ⇐⇒ I is
• R/I is reduced ⇐⇒ I is

(b)(b) Show that the radical of an ideal is an ideal.
(c)(c) Show that a prime ideal is radical.
(d)(d) Let K be a field and R = K[X, Y, Z]. Find a generating set2 for

√
(X2, XY Z, Y 2).

(a)(a)
• R/I is a field ⇐⇒ I is maximal
• R/I is a domain ⇐⇒ I is prime
• R/I is reduced ⇐⇒ I is radical

(b)(b) Let f, g ∈
√
I . Then there are m,n ≥ 1 such that fm, gn ∈ I . Then

(f + g)m+n−1 =
∑

i+j=m+n−1

(
m+ n− 1

i, j

)
f igj,

and for each term in the sum either i ≥ m or j ≥ n, so each term is in I , hence the whole
sum is in I . Now let r ∈ R. Then (rf)m = rmfm ∈ I .

(c)(c) Suppose I is prime. If x ∈
√
I , then xn ∈ I for some n. Then, by the definition of prime,

x ∈ I . Thus,
√
I = I .

(d)(d) Since X2 and Y 2 are in (X2, XY Z, Y 2), we have X, Y ∈
√

(X2, XY Z, Y 2) by defini-
tion, so (X, Y ) ⊆

√
(X2, XY Z, Y 2). For the other containment, if F (X, Y, Z) /∈ (X, Y ),

consider F as a polynomial in X, Y with coefficients in K[Z]; the condition means that
the top degree of F is zero, and hence the top degree of F n is zero for all n, so F /∈√

(X2, XY Z, Y 2).

(4)(4) Evaluation ideals in polynomial rings: Let K be a field and R = K[X1, . . . , Xn] be a polynomial
ring. Let α = (α1, . . . , αn) ∈ Kn.
(a)(a) Let evα : R → K be the map of evaluation at α: evα(f) = f(α1, . . . , αn), or f(α) for short.

Show that mα := ker evα is a maximal ideal and R/mα
∼= K.

(b)(b) Apply division repeatedly to show that mα = (X1 − α1, . . . , Xn − αn).
(c)(c) For K = R and n = 1, find a maximal ideal that is not of this form. Same question with n = 2.
(d)(d) With K arbitrary again, show that every maximal ideal m of R for which R/m ∼= K is of the

form mα for some α ∈ Kn. Note: this is not a theorem with a fancy German name.

2Hint: To show your set generates, you might consider the bottom degree of F considered as a polynomial in X and Y .



(a)(a) The evaluation map is surjective, since for any k ∈ K, the constant function k maps to k. By
the First Isomorphism Theorem, R/mα

∼= K, so mα is maximal.
(b)(b) We have evα(Xi−αi) = αi−αi = 0, so (X1−α1, . . . , Xn−αn) ⊆ mα. Given some F ∈ mα,

consider F as a polynomial in X1 and apply division by X1 − α1, to get F ≡ F1 modulo
(X1−α1, . . . , Xn−αn), for some F1 not involvingX1. Continue withX2−α2, . . . to get the F
is equivalent to a constant, which must be zero. This shows that F ∈ (X1−α1, . . . , Xn−αn),
so mα = (X1 − α1, . . . , Xn − αn).

(c)(c) (X2 + 1); (X2 + 1, Y ).
(d)(d) Let φ : R → R/m ∼= K be quotient map followed by the given isomorphism. Set αi :=

φ(Xi). Then Xi − αi ∈ ker(φ), so mα = (X1 − α1, . . . , Xn − αn) ⊆ ker(φ). Since mα is
maximal, we must have equality.

(5) Lots of generators:
(a) Let K be a field and R = K[X1, X2, . . . ] be a polynomial ring in countably many variables.

Explain3 why the ideal m = (X1, X2, . . . ) cannot be generated by a finite set.
(b) Show that the ideal (Xn, Xn−1Y, . . . , XY n−1, Y n) ⊆ K[X, Y ] cannot be generated by fewer

than n+ 1 generators.
(c) Let R = C([0, 1],R) and α ∈ (0, 1). Show that for any element g ∈ (f1, . . . , fn) ⊆ mα, there is

some ε > 0 and some C > 0 such that |g| < Cmaxi{|fi|} on (α − ε, α + ε). Use this to show
that mα cannot be generated by a finite set.

(a) Suppose m = (f1, . . . , fm). Since each polynomial involves only finitely many variables,
only finitely many variables occur in {f1, . . . , fm}, and since each fi has no constant term,
these polynomials are linear combinations of those variablesX1, . . . , Xn; i.e., (f1, . . . , fm) ⊆
(X1, . . . , Xn). It suffices to show that m 6= (X1, . . . , Xn). To see it, take Xn+1 and note that
Xn+1 =

∑n
i=1 giXi is impossible, since the monomial Xn+1 can’t occur in any summand of

the right hand side.
(b) Note that this ideal is the set of all polynomial whose bottom degree is at least n. Given a

generating set f1, . . . , fm for I , consider the degree n terms of the polynomials fi. We claim
that the degree n terms of f1, . . . , fm must span the space of degree n polynomials as a vector
space. Indeed, given h of degree n, we have h ∈ I , so h =

∑
i gifi. But every term of fi has

degree at least n, so the only things of degree n on the right hand side come from the degree
n piece of fi and the degree zero piece of gi. This shows the claim. Then the statement is
clear, since the degree n terms form an n+ 1 dimensional vector space.

(c) Let g =
∑
gifi ∈ (f1, . . . , fn). By continuity, there is some ε > 0 and some C > 0 such

that |gi| < C/n on (α− ε, α+ ε), so |g| < |
∑

i gifi| ≤
∑

i |gi||fi| ≤
∑

iC/nmaxi{|fi|} ≤
Cmaxi{|fi|} on (α− ε, α+ ε).
Now, given f1, . . . , fn ∈ mα, let g =

√
maxi{|fi|}. Then g is continuous and g(α) = 0, so

g ∈ mα, but g/maxi{|fi|} = 1/g → ∞ as x → α, so there is no constant C > 0 and no
interval (α− ε, α+ ε) on which |g| < Cmaxi{|fi|}. Thus, mα is not finitely generated.

(6) Evaluation ideals in function rings: Let R = C([0, 1],R). Let α ∈ [0, 1].
(a) Let evα : C([0, 1])→ R be the map of evaluation at α: evα(f) = f(α). Show that mα := evα is

a maximal ideal and R/mα
∼= R.

(b) Show that (x− α) ⊆ mα.

3Hint: You might find it convenient to show that (f1, . . . , fm) ⊆ (X1, . . . , Xn) for some n, and then show that (X1, . . . , Xn) $ m



(c) Show that every maximal ideal R is of the form mα for some α ∈ [0, 1]. You may want to argue
by contradiction: if not, there is an ideal I such that the sets Uf := {x ∈ [0, 1] | f(x) 6= 0} for
f ∈ I form an open cover of [0, 1]. Take a finite subcover Uf1 , . . . , Uft and consider f 2

1 +· · ·+f 2
t .

(a) evα : C([0, 1]) → R is a surjective ring homomorphism, since evα(r) = r for any r ∈ R.
Thus, by the First Isomorphism Theorem, R/mα

∼= R, and hence mα is a maximal ideal.
(b) It suffices to note that evα(x− α) = 0.
(c) Argue by contradiction: if not, there is a proper ideal I that is not contained in some mα; this

means that for every α, some element of I does not vanish at α. Since for any continuous
f , the set Uf := {x ∈ [0, 1] | f(x) 6= 0} is open, the collection {Uf | f ∈ I} is an open
cover of [0, 1]. Since [0, 1] is compact, there is a finite subcover Uf1 , . . . , Uft . For these fi’s
consider h = f 2

1 + · · · + f 2
t . Each f 2

i is nonnegative, and for any α, one of these is strictly
positive at α. This means that h(x) 6= 0 for all x ∈ [0, 1], so h is a unit, and hence I = R, a
contradiction.

(7) Division Algorithm.
(a) What fails in the Division Algorithm when g is not monic? Uniqueness? Existence? Both?
(b) Review the proof of the Division Algorithm.

(8) Let K be a field and R = KJX1, . . . , XnK be a power series ring in n indeterminates. Let
R′ = KJX1, . . . , Xn−1K, so we can also think of R = R′JXnK. In this problem we will prove the
useful analogue of division in power series rings:

WEIERSTRASS DIVISION THEOREM: Let r ∈ R, and write g =
∑

i≥0 aiX
i
n with ai ∈ R′. For some

d ≥ 0, suppose that ad ∈ R′ is a unit, and that ai ∈ R′ is not a unit for all i < d. Then, for any f ∈ R,
there exist unique q ∈ R and r ∈ R′[Xn] such that f = gq+ r and the top degree of r as a polynomial
in Xn is less than d.

(a) Show the theorem in the very special case g = Xd
n.

(b) Show the theorem in the special case ai = 0 for all i < d.
(c) Show the uniqueness part of the theorem.4

(d) Show the existence part of the theorem.5

(a) Given f , write f =
∑

i≥0 biX
i
n with bi ∈ R′. For existence, just take r =

∑d−1
i=0 biX

i
n and

q =
∑∞

i=d biX
i−d
n . For uniqueness, note that if f = gq+ r = gq′+ r′ with the top degree of r

and r′ as polynomials in Xn are less than d. Then 0 = g(q− q′)+ (r− r′), so the uniqueness
claim reduces to the case f = 0; we will use this in the other parts without comment. Every
term of r has Xn-degree less than d, whereas every term of qg has Xn-degree at least d, so
no terms can cancel. Thus qg + r = 0 implies q = r = 0 (here and henceforth, we assume r
is as in the statement when we write qg + r).

(b) If ai = 0 for i < d, then g = Xd
nu where u =

∑
i≥0 ai−dX

i
n. Since the constant coefficient

of u is ad, which is a unit in R′, u is a unit in R. Thus, we can apply (a) to f and Xd
n to get

4Hint: For an element of R′ or of R, write ord′ for the order in the X1, . . . , Xn−1 variables; that is, the lowest total X1, . . . , Xn−1-
degree of a nonzero term (not counting Xn in the degree). If qg + r = 0, write q =

∑
i biX

i
n. You might find it convenient to

pick i such that ord′(bi) is minimal, and in case of a tie, choose the smallest such i among these.
5Hint: Write g− =

∑t−1
i=0 aiX

i
n and g+ =

∑∞
i=t aiX

i
n. Apply (b) with g+ instead of g, to get some q0, r0; write f1 = f−(q0g+r0),

and keep repeating to get a sequence of qi’s and ri’s. Show that ord′(qi), ord′(ri) ≥ i, and use this to make sense of q =
∑

i qi
and r =

∑
i ri.



f = q0X
d
n + r0 = (q0u

−1)g + r0; thus, q = q0u
−1 and r = r0 satisfy the existence clause of

the theorem. For uniqueness, if f = q′g+ r′, then f = q′uXd
n+ r′, so by the uniqueness part

of (a), we must have q′u = q0 and r′ = r0, and thus q′ = q and r′ = r.
(c) For an element of R′ or of R, write ord′ for the order in the X1, . . . , Xn−1 variables; that

is, the lowest total X1, . . . , Xn−1-degree of a nonzero term (not counting Xn in the degree).
Suppose that qg + r = 0, and write q =

∑
i biX

i
n. Suppose that q is nonzero, so bi 6= 0 for

some i. Pick i such that ord′(bi) ≤ ord′(bj) for all j with bj 6= 0, and ord′(bi) = ord′(bj)
implies i < j; we can do this by well ordering of N. Say ord′(bi) = t. Consider the
coefficient of Xd+i

n in 0 = qg + r. Byt he degree constraint on r, this is the same as the
coefficient of Xd+i

n in qg. Multiplying out, this is
∑d+i

j=0 ad+i−jbj . For j = i, the order of
adbi is t. For j < i, we have ord′(ad+i−jbj) ≥ ord′(bj) > t by choice of i. For j > i, since
ord′(ad+i−j) > 0 and ord’(bj) ≥ t, we have ord′(ad+i−jbj) > t. Thus, the no term can cancel
the adbi term, so qg + r 6= 0. On the other hand, if q = 0 and r 6= 0, clearly qg + r 6= 0. It
follows there there are unique q, r such that qg + r = 0.

(d) First, we observe that in the context of (b), if ord′(f) = t, then ord′(q), ord′(r) ≥ t. This is
clear in the setting of (a), and following the proof of (b), we just need to observe that if u is
a unit in R, then ord′(q0u

−1) ≥ ord′(q0), which is clear since any coefficient of the product
q0u
−1 is a sum of multiples of the coefficients of q0.

Now we begin the main proof. Write g− =
∑t−1

i=0 aiX
i
n and g+ =

∑∞
i=t aiX

i
n. Apply (b)

with g+ to write f = q0g+ + r0, and set f1 = f − (q0g + r0) = −q0g−. Repeat with f1
to write f1 = q1g+ + r1, and f2 = f1 − (q1g + r1) = −q1g−. Continue like so to obtain
a sequence of series q0, q1, . . . and r0, r1, . . . . From the observation above, we have that
ord′(qi), ord

′(ri) ≥ ord′(fi) ≥ ord′(qi1) + 1, since the constant term of each coefficient of
g− vanishes. It follows that ord′(qi), ord′(ri) ≥ i for each i.
For a series h, write [h]i for the degree i part of h, and [h]≤i for the sum of all parts of degree
≤ i. Define q to be the series such that [q]i =

∑i
j=0[qj]i, and likewise with r. Note that

r is a still a polynomial in Xn of top degree less than d. We claim that f = qg + r. To
show this, it suffices to show that [f ]i = [qg + r]i. Note that to compute [qg + r]i, we can
replace q, g, r by [q]≤i, and similarly for the others. But [q]≤i = [

∑i
j=0 qj]≤i (and likewise

with r), so [qg + r]i = [(
∑i

j=0 qj)g + (
∑i

j=0 rj)]i. Then, by construction of the sequences
{qi}, {ri}, {fi}, we have [f − (qg + r)]i = [fi+1]i and since ord′(fi+1) ≥ i + 1, we have
[fi+1]i = 0. It follows that f − (qg + r) = 0; i.e., f = qg + r.


