
§1.2: IDEALS

DEFINITION: Let S be a subset of a ring R. The ideal generated by S, denoted (S), is the smallest ideal
containing S. Equivalently,

(S) =
{∑

risi | ri ∈ R, si ∈ S
}

is the set of R-linear combinations1 of elements of S.

We say that S generates an ideal I if (S) = I .

DEFINITION: Let I, J be ideals of a ring R. The following are ideals:
• IJ := (ab | a ∈ I, b ∈ J).
• In := I · I · · · I︸ ︷︷ ︸

n times

= (a1 · · · an | ai ∈ I) for n ≥ 1.

• I + J := {a+ b | a ∈ I, b ∈ J} = (I ∪ J).
• rI := (r)I = {ra | a ∈ I} for r ∈ R.
• I : J := {r ∈ R | rJ ⊆ I}.

DEFINITION: Let I be an ideal in a ring R. The radical of I is
√
I := {f ∈ R | fn ∈ I for some n ≥ 1}.

An ideal I is radical if I =
√
I .

DIVISION ALGORITHM: Let A be a ring, and R = A[X] be a polynomial ring. Let g ∈ R be a monic
polynomial; i.e., the leading coefficient of f is a unit. Then for any f ∈ R, there exist unique polynomials
q, r ∈ R such that f = gq + r and the top degree of r is less than the top degree of g.

(1)(1) Briefly discuss why the two characterizations of (S) in Definition 2.1 are equal.

(2)(2) Finding generating sets for ideals: Let S be a subset of a ring R, and I an ideal.
(a)(a) To show that (S) = I , which containment do you think is easier to verify? How would you check?
(b)(b) To show that (S) = I given (S) ⊆ I , explain why it suffices to show that I/(S) = 0 in R/(S);

i.e., that every element of I is equivalent to 0 modulo S.
(c)(c) Let K be a field, R = K[U, V,W ] and S = K[X, Y ] be polynomial rings. Let φ : R→ S be the

ring homomorphism that is constant on K, and maps U 7→ X2, V 7→ XY,W 7→ Y 2. Show that
the kernel φ is generated by V 2 − UW as follows:
• Show that (V 2 − UW ) ⊆ ker(φ).
• Think of R as K[U,W ][V ]. Given F ∈ ker(φ), use the Division Algorithm to show that
F ≡ F1V + F0 modulo (V 2−UW ) for some F1, F0 ∈ K[U,W ] with F1V +F0 ∈ ker(φ).
• Use φ(F1V + F0) = 0 to show that F1 = F0 = 0, and conclude that F ∈ ker(φ).

(3)(3) Radical ideals:
(a)(a) Fill in the blanks and convince yourself:

• R/I is a field ⇐⇒ I is
• R/I is a domain ⇐⇒ I is
• R/I is reduced ⇐⇒ I is

(b)(b) Show that the radical of an ideal is an ideal.
(c)(c) Show that a prime ideal is radical.
(d)(d) Let K be a field and R = K[X, Y, Z]. Find a generating set2 for

√
(X2, XY Z, Y 2).

1Linear combinations always means finite linear combinations: the axioms of a ring can only make sense of finite sums.
2Hint: To show your set generates, you might consider the bottom degree of F considered as a polynomial in X and Y .



(4)(4) Evaluation ideals in polynomial rings: Let K be a field and R = K[X1, . . . , Xn] be a polynomial
ring. Let α = (α1, . . . , αn) ∈ Kn.
(a)(a) Let evα : R → K be the map of evaluation at α: evα(f) = f(α1, . . . , αn), or f(α) for short.

Show that mα := ker evα is a maximal ideal and R/mα
∼= K.

(b)(b) Apply division repeatedly to show that mα = (X1 − α1, . . . , Xn − αn).
(c)(c) For K = R and n = 1, find a maximal ideal that is not of this form. Same question with n = 2.
(d)(d) With K arbitrary again, show that every maximal ideal m of R for which R/m ∼= K is of the

form mα for some α ∈ Kn. Note: this is not a theorem with a fancy German name.

(5) Lots of generators:
(a) Let K be a field and R = K[X1, X2, . . . ] be a polynomial ring in countably many variables.

Explain3 why the ideal m = (X1, X2, . . . ) cannot be generated by a finite set.
(b) Show that the ideal (Xn, Xn−1Y, . . . , XY n−1, Y n) ⊆ K[X, Y ] cannot be generated by fewer

than n+ 1 generators.
(c) Let R = C([0, 1],R) and α ∈ (0, 1). Show that for any element g ∈ (f1, . . . , fn) ⊆ mα, there is

some ε > 0 and some C > 0 such that |g| < Cmaxi{|fi|} on (α − ε, α + ε). Use this to show
that mα cannot be generated by a finite set.

(6) Evaluation ideals in function rings: Let R = C([0, 1],R). Let α ∈ [0, 1].
(a) Let evα : C([0, 1])→ R be the map of evaluation at α: evα(f) = f(α). Show that mα := evα is

a maximal ideal and R/mα
∼= R.

(b) Show that (x− α) ⊆ mα.
(c) Show that every maximal ideal R is of the form mα for some α ∈ [0, 1]. You may want to argue

by contradiction: if not, there is an ideal I such that the sets Uf := {x ∈ [0, 1] | f(x) 6= 0} for
f ∈ I form an open cover of [0, 1]. Take a finite subcover Uf1 , . . . , Uft and consider f 2

1 +· · ·+f 2
t .

(7) Division Algorithm.
(a) What fails in the Division Algorithm when g is not monic? Uniqueness? Existence? Both?
(b) Review the proof of the Division Algorithm.

(8) Let K be a field and R = KJX1, . . . , XnK be a power series ring in n indeterminates. Let
R′ = KJX1, . . . , Xn−1K, so we can also think of R = R′JXnK. In this problem we will prove the
useful analogue of division in power series rings:

WEIERSTRASS DIVISION THEOREM: Let r ∈ R, and write g =
∑

i≥0 aiX
i
n with ai ∈ R′. For some

d ≥ 0, suppose that ad ∈ R′ is a unit, and that ai ∈ R′ is not a unit for all i < d. Then, for any f ∈ R,
there exist unique q ∈ R and r ∈ R′[Xn] such that f = gq+ r and the top degree of r as a polynomial
in Xn is less than d.

(a) Show the theorem in the very special case g = Xd
n.

(b) Show the theorem in the special case ai = 0 for all i < d.
(c) Show the uniqueness part of the theorem.4

(d) Show the existence part of the theorem.5

3Hint: You might find it convenient to show that (f1, . . . , fm) ⊆ (X1, . . . , Xn) for some n, and then show that (X1, . . . , Xn) $ m
4Hint: For an element of R′ or of R, write ord′ for the order in the X1, . . . , Xn−1 variables; that is, the lowest total X1, . . . , Xn−1-
degree of a nonzero term (not counting Xn in the degree). If qg + r = 0, write q =

∑
i biX

i
n. You might find it convenient to

pick i such that ord′(bi) is minimal, and in case of a tie, choose the smallest such i among these.
5Hint: Write g− =

∑t−1
i=0 aiX

i
n and g+ =

∑∞
i=t aiX

i
n. Apply (b) with g+ instead of g, to get some q0, r0; write f1 = f−(q0g+r0),

and keep repeating to get a sequence of qi’s and ri’s. Show that ord′(qi), ord′(ri) ≥ i, and use this to make sense of q =
∑

i qi
and r =

∑
i ri.


