§1.2: IDEALS

DEFINITION: Let S be a subset of a ring R. The ideal generated by S, denoted (.5), is the smallest ideal
containing .S. Equivalently,

(S) = {Z risi | ri € Rys; €S } is the set of R-linear combinations' of elements of S.
We say that S generates an ideal [ if (S) = 1.

DEFINITION: Let 7, J be ideals of a ring R. The following are ideals:
o [J:=(ablaecl,beJ).
o [":=]-1---I=(ay---a,|a; €I)forn>1.
n times
e[+ J:={a+blacl,beJ}=TUJ).
o rl:=(r)l={ra|acl}forreR.
o [:J={reR|rJCI}

DEFINITION: Let ] be an ideal in a ring R. The radical of I is /1 := {f € R| f* € I for some n > 1}.
An ideal I is radical if / = /7.

DIVISION ALGORITHM: Let A be aring, and R = A[X] be a polynomial ring. Let ¢ € R be a monic
polynomial; i.e., the leading coefficient of f is a unit. Then for any f € R, there exist unique polynomials
q,7 € R such that f = gq + r and the top degree of r is less than the top degree of g.

(1) Briefly discuss why the two characterizations of (.S) in Definition 2.1 are equal.

(2) Finding generating sets for ideals: Let S be a subset of a ring R, and [ an ideal.

(a) To show that (S) = I, which containment do you think is easier to verify? How would you check?

(b) To show that (S) = I given (5) C I, explain why it suffices to show that I/(S) = 0in R/(S5);
i.e., that every element of [ is equivalent to 0 modulo S.

() Let K beafield, R = K[U,V,W]and S = K[X, Y] be polynomial rings. Let ¢ : R — S be the
ring homomorphism that is constant on K, and maps U — X2V — XY, W — Y2 Show that
the kernel ¢ is generated by V2 — UW as follows:

e Show that (V2 — UW) C ker(o).

e Think of R as K[U, W]|[V]. Given F' € ker(¢), use the Division Algorithm to show that
F = F\V + Fymodulo (V2 —UW) for some Fy, Fy € K[U, W] with [}V + F, € ker(¢).

e Use ¢o(F1V + Fy) = 0 to show that F; = Fj = 0, and conclude that I € ker(¢).

(3) Radical ideals:
(a) Fill in the blanks and convince yourself:

e R/Iisafield <~ Iis
e R/Iisadomain <= [is
e R/Iisreduced <= Iis

(b) Show that the radical of an ideal is an ideal.
(c) Show that a prime ideal is radical.
(d) Let K be a field and R = K[X,Y, Z]. Find a generating set’ for \/(X2, XY Z,Y?).

ILinear combinations always means finife linear combinations: the axioms of a ring can only make sense of finite sums.
“Hint: To show your set generates, you might consider the bottom degree of F' considered as a polynomial in X and Y.



(4) Evaluation ideals in polynomial rings: Let K be a field and R = K[Xj, ..., X,] be a polynomial

ring. Let o = (ay, ..., ) € K™

(@) Letev, : R — K be the map of evaluation at o ev,(f) = f(aq,...,a,), or f(«) for short.
Show that m,, := ker ev,, is a maximal ideal and R/m, =~ K.

(b) Apply division repeatedly to show that m, = (X; — o, ..., X, — ).

(c) For K = R and n = 1, find a maximal ideal that is not of this form. Same question with n = 2.

(d) With K arbitrary again, show that every maximal ideal m of R for which R/m = K is of the
form m,, for some o € K. Note: this is not a theorem with a fancy German name.

(5) Lots of generators:

(a) Let K be a field and R = K[X;, Xs,...] be a polynomial ring in countably many variables.
Explain® why the ideal m = (X, X, ...) cannot be generated by a finite set.

(b) Show that the ideal (X", X" 'Y,..., XY™ 1 Y") C K[X,Y] cannot be generated by fewer
than n + 1 generators.

(c) Let R = C([0,1],R) and v € (0, 1). Show that for any element g € (f1,..., f,) C m,, there is
some € > 0 and some C' > 0 such that |g| < C'max;{|f;|} on (o — €, + ¢). Use this to show
that m,, cannot be generated by a finite set.

(6) Evaluation ideals in function rings: Let R = C([0, 1], R). Let v € [0, 1].
(a) Letev, : C([0,1]) — R be the map of evaluation at a: ev,(f) = f(«). Show that m,, := ev, is
a maximal ideal and R/m, = R.
(b) Show that (z — a) C m,,.
(c) Show that every maximal ideal R is of the form m,, for some « € [0, 1]. You may want to argue
by contradiction: if not, there is an ideal I such that the sets U := {z € [0,1] | f(z) # 0} for
f € I form an open cover of [0, 1]. Take a finite subcover Uy, , ..., Uy, and consider f2+- - -+ f2.

(7) Division Algorithm.
(a) What fails in the Division Algorithm when ¢ is not monic? Uniqueness? Existence? Both?
(b) Review the proof of the Division Algorithm.

(8) Let K be a field and R = K[Xj, ..., X,] be a power series ring in n indeterminates. Let
R = K[Xy,...,X,_1], so we can also think of R = R'[X,,]. In this problem we will prove the
useful analogue of division in power series rings:

WEIERSTRASS DIVISION THEOREM: Letr € R, and write g = Y., a; X}, with a; € R'. For some
d > 0, suppose that a; € R’ is a unit, and that a; € R’ is not a unit for all i < d. Then, for any f € R,
there exist unique ¢ € R and r € R'[X,,| such that f = gq+ r and the top degree of r as a polynomial
in X, is less than d.

(a) Show the theorem in the very special case g = X¢.

(b) Show the theorem in the special case a; = 0 for all 7 < d.
(c) Show the uniqueness part of the theorem.*

(d) Show the existence part of the theorem.’

3Hint: You might find it convenient to show that (f1, ..., fm) C (X1, ..., X,,) for some n, and then show that (X71,...,X,) &

m
=
4Hint: For an element of R’ or of R, write ord’ for the order in the X 1,...,Xy,_1 variables; that is, the lowest total X1,..., X,,_1-

degree of a nonzero term (not counting X, in the degree). If gg + r = 0, write ¢ = ), b; X. You might find it convenient to
pick ¢ such that ord’(bi) is minimal, and in case of a tie, choose the smallest such ¢ among these.

SHint: Write g_ = Zf;é a; X} and g1 = >°7°, a; X?:. Apply (b) with g instead of g, to get some go, 7o; write f1 = f—(qog+r0),
and keep repeating to get a sequence of ¢;’s and r;’s. Show that ord’(g;), ord’(r;) > 4, and use this to make sense of ¢ = Y, ¢;
andr =3 . r;.



