
WORKSHEET #1.1: RINGS

EXAMPLE: The following are rings.
(1) Rings of numbers, like Z and Z[i] = {a+ bi ∈ C | a, b ∈ Z}.
(2) Given a starting ring A, the polynomial ring in one indeterminate

A[X] := {adXd + · · ·+ a1X + a0 | d ≥ 0, ai ∈ A},
or in a (finite or infinite!1) set of indeterminates A[X1, . . . , Xn], A[Xλ | λ ∈ Λ].

(3) Given a starting ring A, the power series ring in one indeterminate

AJXK :=

{∑
i≥0

aiX
i | ai ∈ A

}
,

or in a set of indeterminates AJX1, . . . , XnK.
(4) For a set X , Fun(X,R) := {all functions f : [0, 1]→ R} with pointwise + and ×.
(5) C([0, 1]) := {continuous functions f : [0, 1]→ R} with pointwise + and ×.
(6) C∞([0, 1]) := {infinitely differentiable functions f : [0, 1]→ R} with pointwise + and ×.

(÷) Quotient rings: given a starting ring A and an ideal I , R = A/I .
(×) Product rings: given rings R and S, R× S = {(r, s) | r ∈ R, s ∈ S}.

DEFINITION: An element x in a ring R is called a
• unit if x has an inverse y ∈ R (i.e., xy = 1).
• zerodivisor if there is some y 6= 0 in R such that xy = 0.
• nilpotent if there is some e ≥ 0 such that xe = 0.
• idempotent if x2 = x.

We also use the terms nonunit, nonzerodivisor, nonnilpotent, nonidempotent for the negations of
the above. We say that a ring is reduced if it has no nonzero nilpotents.

(1)(1) Warmup with units, zerodivisors, nilpotents, and idempotents.
(a)(a) What are the implications between nilpotent, nonunit, and zerodivisor?
(b)(b) What are the implications between reduced, field, and domain?
(c)(c) What two elements of a ring are always idempotents? We call an idempotent nontrivial to

mean that it is neither of these.
(d)(d) If e is an idempotent, show that e′ := 1− e is an idempotent2 and ee′ = 0.

(a)(a) nilpotent⇒ zerodivisor⇒ nonunit
(b)(b) reduced⇐ domain⇐ field
(c)(c) 0 and 1
(d)(d) e′2 = (1− e)(1− e) = 1− 2e+ e2 = 1− e = e′ and ee′ = e(1− e) = e− e2 = 0.

(2)(2) Elements in polynomial rings: Let R = A[X1, . . . , Xn] a polynomial ring over a domain A.
(a)(a) If n = 1, and f, g ∈ R = A[X], briefly explain why the top degree3 of fg equals the top

degree of f plus the top degree of g. What if A is not a domain?

1Note: Even if the index set is infinite, by definition the elements of A[Xλ | λ ∈ Λ] are finite sums of monomials (with
coefficients in A) that each involve finitely many variables.

2We call e′ the complementary idempotent to e.
3The top degree of f =

∑
aiX

i is max{k | ak 6= 0}; we say top coefficient for ak. We use the term top degree instead
of degree for reasons that will come up later.



(b)(b) Again if n = 1, briefly explain whyR = A[X] is a domain, and identify all of the units inR.
(c)(c) Now for general n, show that R is a domain, and identify all of the units in R.

(a)(a) If f = amXm + lower terms and g = bnXn + lower terms , then fg =
∑
ambnX

m+n +
lower terms. If A is a domain, then am, bn 6= 0 implies ambn 6= 0, but if A is not a
domain, the top degree may drop.

(b)(b) By looking at the top degree terms as above, we see that the product of nonzero poly-
nomials is nonzero. The units in R are just the units in A viewed as polynomials with
no higher degree terms. Indeed, such elements are definitely units; on the other hand, if
fg = 1 in R, then the top degree of f and g are both zero, so f and g are constant, which
means f and g are in A, so a unit in R is a unit in A.

(c) The claim that R is a domain follows by induction on n, since A[X1, . . . , Xn] =
A[X1, . . . , Xn−1][Xn]. The units in R are again the units in A. This also follows
by induction on n: a unit in A[X1, . . . , Xn] = A[X1, . . . , Xn−1][Xn] is a unit in
A[X1, . . . , Xn−1], which by the induction hypothesis is constant.

(3)(3) Elements in power series rings: Let A be a ring.
(a)(a) Explain why the set of formal sums {

∑
i∈Z aiXi | ai ∈ A} with arbitrary positive and

negative exponents is not clearly a ring in the same way as AJXK.
(b)(b) Given series f, g ∈ AJXK, how much of f, g do you need to know to compute the X3-

coefficient of f + g? What about the X3-coefficient of fg?
(c)(c) Find the first three coefficients for the inverse4 of f = 1 + 3X + 7X2 + · · · in RJXK.
(d)(d) Does “top degree” make sense in AJXK? What about “bottom degree”?
(e)(e) Explain why5 for a domain A, the power series ring AJX1, . . . , XnK is also a domain.
(f)(f) Show6 that f ∈ AJX1, . . . , XnK is a unit if and only if the constant term of f is a unit.

(a)(a) To multiply two such formal sums, you would have to take an infinite sum in A to
compute the coefficient of any X i.

(b)(b) To compute the X3-coefficient of f + g, you just need to know the X3-coefficients of
f and g. To compute the X3-coefficient of fg, you need to know the 1, X,X2, X3

coefficients of f and g.
(c)(c) g = 1− 3X − 2X2 + · · · .
(d)(d) No; yes.
(e)(e) For n = 1, look at the bottom degree terms. The bottom degree term of the product is

the product of the bottom degree terms; if A is a domain, this product is nonzero. The
statement just follows by induction on n.

(f)(f) If f is a unit, then the constant term is a unit, since the constant term of fg is the constant
term of f times that of g.
For the other direction, first, take n = 1. Given f =

∑
i aiX

i, construct g =∑
i biX

i by defining bm recursively b0 = 1/a0 and that the Xm-coefficient of
(
∑m

i=0 aiX
i)(

∑m
i=0 biXi) is 0 for m > 0: we can do this since, given b0, . . . , bm that

work in the mth step, in the next step we can the formula for the Xm+1 coefficient is
a0bm+1+a1bm+· · ·+am+1b0, since a0 is a unit, we can solve for bm+1 to make this equal

4It doesn’t matter what the · · · are!
5You might want to start with the case n = 1.
6Hint: For n = 1, given f =

∑
i aiX

i, construct g =
∑
i biX

i by defining bm recursively b0 = 1/a0 and that the
Xm-coefficient of (

∑m
i=0 aiX

i)(
∑m
i=0 biXi) is 0 for m > 0.



zero without changing the lower coefficients. Continuing this way, take g =
∑

i biX
i.

Then for any k, the Xk-coefficient only depends on the a0, . . . , ak and b0, . . . , bk coeffi-
cients, and by construction, this coefficient is zero for k ≥ 1. Thus, any such f has an
inverse.
The general claim follows by induction on n: if f ∈ AJX1, . . . , XnK has a unit con-
stant term considered as a power series in AJX1, . . . , XnK, then its constant term in
(AJX1, . . . , Xn−1K)JXnK has a unit constant term, hence is a unit in AJX1, . . . , Xn−1K,
so f is a unit in (AJX1, . . . , Xn−1K)JXnK = AJX1, . . . , XnK.

(4) Elements in function rings.
(a) For R = Fun([0, 1],R),

(i) What are the nilpotents in R?
(ii) What are the units in R?

(iii) What are the idempotents in R?
(iv) What are the zerodivisors in R?

(b) ForR = C([0, 1],R),R = C∞([0, 1],R) same questions as above. When are there any/none?

(a) For R = Fun([0, 1],R),
(i) There are no nilpotents, since for any α ∈ [0, 1], f(α)n = 0 means that f(α) = 0.

(ii) The units are the functions that are never zero, since the function g(x) = 1/f(x)
is then defined (and conversely).

(iii) f(x) is idempotent if f(α) ∈ {0, 1} for all α ∈ [0, 1].
(iv) Any function that is zero at some point is a zerodivisor: if S = {α ∈

[0, 1] | f(α) = 0} is nonempty, then let g be a nonzero function that vanishes
on [0, 1] r S, then fg = 0.

(b) For R = C([0, 1]) or R = C∞([0, 1]),
(i) Same

(ii) Same
(iii) There are no nontrivial idempotents: the same condition as above applies, but by

continuity, f must either be identically 0 or identically 1.
(iv) The difference is that now there may not be a nonzero function that vanishes on

[0, 1]rS, e.g., if f vanishes at a single point. To be a zerodivisor, the set [0, 1]rS
as above must be not be dense.

(5)(5) Product rings and idempotents.
(a)(a) Let R and S be rings, and T = R × S. Show that (1, 0) and (0, 1) are nontrivial comple-

mentary idempotents in T .
(b)(b) Let T be a ring, and e ∈ T a nontrivial idempotent, with e′ = 1 − e. Explain why

Te = {te | t ∈ T} and Te′ are rings with the same addition and multiplication as T . Why
didn’t I say “subring”?

(c)(c) Let T be a ring, and e ∈ T a nontrivial idempotent, with e′ = 1−e. Show that T ∼= Te×Te′.
Conclude that R has nontrivial idempotents if and only if R decomposes as a product.

(a)(a) (1, 0)2 = (1, 0), (0, 1)2 = (0, 1), and (1, 0) + (0, 1) = (1, 1) is the “1” of R× S.
(b)(b) re+ se = (r + s)e and (re)(se) = rse2 = rse. Same with e′.
(c)(c) Define φ : T → Te × Te′ by φ(t) = (te, te′). The verification that this is a ring

homomorphism essentially the content of (b). If φ(t) = (0, 0), then te = 0 and 0 =
te′ = t(1 − e) = t − te, so t = 0, hence φ is injective. Given (re, se′) ∈ Te × Te′, we
have φ(re+ se′) = ((re+ se′)e, (re+ se′)e′) = (re, se′), hence φ is surjective, as well.



(6) Elements in quotient rings:
(a) Let K be a field, and R = K[X, Y ]/(X2, XY ). Find

• a nonzero nilpotent in R
• a zerodivisor in R that is not a nilpotent
• a unit in R that is not equivalent to a constant polynomial

(b) Find n ∈ Z such that
• [4] ∈ Z/(n) is a unit
• [4] ∈ Z/(n) is a nonzero nilpotent

• [4] ∈ Z/(n) is a nonnilp. zerodivisor
• [4] ∈ Z/(n) is a nontrivial idempotent

This solution is embargoed.

(7) More about elements.
(a) Prove that a nilpotent plus a unit is always a unit.
(b) LetA be an arbitrary ring, andR = A[X]. Characterize, in terms of their coefficients, which

elements of R are units, and which elements are nilpotents.
(c) Let A be an arbitrary ring, and R = AJXK. Characterize, in terms of their coefficients,

which elements of R are nilpotents.


