EXAMPLE: The following are rings.

- (1) Rings of numbers, like \mathbb{Z} and $\mathbb{Z}[i] = \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}.$
- (2) Given a starting ring A , the polynomial ring in one indeterminate

 $A[X] := \{a_d X^d + \cdots + a_1 X + a_0 \mid d \geq 0, a_i \in A\},\$

or in a (finite or infinite!¹) set of indeterminates $A[X_1, \ldots, X_n]$, $A[X_\lambda \mid \lambda \in \Lambda]$.

(3) Given a starting ring A , the power series ring in one indeterminate

$$
A[\![X]\!] := \left\{ \sum_{i \geq 0} a_i X^i \mid a_i \in A \right\},\,
$$

or in a set of indeterminates $A[[X_1, \ldots, X_n]].$

- (4) For a set X, $\text{Fun}(X,\mathbb{R}) := \{ \text{all functions } f : [0,1] \to \mathbb{R} \}$ with pointwise $+$ and \times .
- (5) $\mathcal{C}([0, 1]) := \{$ continuous functions $f : [0, 1] \to \mathbb{R}\}$ with pointwise $+$ and \times .
- (6) $\mathcal{C}^{\infty}([0,1]) := \{\text{infinitely differentiable functions } f : [0,1] \to \mathbb{R}\}\$ with pointwise $+$ and \times .
- (\div) Quotient rings: given a starting ring A and an ideal I, $R = A/I$.
- (\times) Product rings: given rings R and S, $R \times S = \{(r, s) | r \in R, s \in S\}.$

DEFINITION: An element x in a ring R is called a

- unit if x has an inverse $y \in R$ (i.e., $xy = 1$).
- zerodivisor if there is some $y \neq 0$ in R such that $xy = 0$.
- **nilpotent** if there is some $e \ge 0$ such that $x^e = 0$.
- idempotent if $x^2 = x$.

We also use the terms **nonunit, nonzerodivisor, nonnilpotent, nonidempotent** for the negations of the above. We say that a ring is **reduced** if it has no nonzero nilpotents.

(1) Warmup with units, zerodivisors, nilpotents, and idempotents.

- (a) What are the implications between nilpotent, nonunit, and zerodivisor?
- (b) What are the implications between reduced, field, and domain?
- (c) What two elements of a ring are always idempotents? We call an idempotent nontrivial to mean that it is neither of these.
- (d) If e is an idempotent, show that $e' := 1 e$ is an idempotent² and $ee' = 0$.

(a) nilpotent \Rightarrow zerodivisor \Rightarrow nonunit **(b)** reduced \Leftarrow domain \Leftarrow field (c) 0 and 1 (d) $e^{t^2} = (1 - e)(1 - e) = 1 - 2e + e^2 = 1 - e = e'$ and $ee' = e(1 - e) = e - e^2 = 0$.

- (2) Elements in polynomial rings: Let $R = A[X_1, \ldots, X_n]$ a polynomial ring over a *domain* A.
	- (a) If $n = 1$, and $f, g \in R = A[X]$, briefly explain why the top degree³ of fg equals the top degree of f plus the top degree of q. What if A is not a domain?

¹Note: Even if the index set is infinite, by definition the elements of $A[X_\lambda | \lambda \in \Lambda]$ are finite sums of monomials (with coefficients in A) that each involve finitely many variables.

²We call e' the **complementary idempotent** to e .

³The top degree of $f = \sum a_i X^i$ is $\max\{k \mid a_k \neq 0\}$; we say top coefficient for a_k . We use the term top degree instead of degree for reasons that will come up later.

(b) Again if $n = 1$, briefly explain why $R = A[X]$ is a domain, and identify all of the units in R.

- (c) Now for general n, show that R is a domain, and identify all of the units in R.
	- (a) If $f = a_m X_m +$ lower terms and $g = b_n X_n +$ lower terms, then $fg = \sum a_m b_n X^{m+n} +$ lower terms. If A is a domain, then $a_m, b_n \neq 0$ implies $a_m b_n \neq 0$, but if A is not a domain, the top degree may drop.
	- (b) By looking at the top degree terms as above, we see that the product of nonzero polynomials is nonzero. The units in R are just the units in A viewed as polynomials with no higher degree terms. Indeed, such elements are definitely units; on the other hand, if $fg = 1$ in R, then the top degree of f and g are both zero, so f and g are constant, which means f and g are in A, so a unit in R is a unit in A.
	- (c) The claim that R is a domain follows by induction on n, since $A[X_1, \ldots, X_n]$ = $A[X_1, \ldots, X_{n-1}][X_n]$. The units in R are again the units in A. This also follows by induction on n: a unit in $A[X_1, \ldots, X_n] = A[X_1, \ldots, X_{n-1}][X_n]$ is a unit in $A[X_1, \ldots, X_{n-1}]$, which by the induction hypothesis is constant.
- (3) Elements in power series rings: Let A be a ring.
	- (a) Explain why the set of formal sums $\{\sum_{i\in\mathbb{Z}} a_i X_i \mid a_i \in A\}$ with arbitrary positive and negative exponents is *not* clearly a ring in the same way as $A||X||$.
	- **(b)** Given series $f, g \in A[[X]]$, how much of f, g do you need to know to compute the X^3 -
coefficient of $f + g$? What about the X^3 -coefficient of $f g$? coefficient of $f + g$? What about the X^3 -coefficient of fg ?
	- (c) Find the first three coefficients for the inverse⁴ of $f = 1 + 3X + 7X^2 + \cdots$ in $\mathbb{R}[X]$.
(d) Does "top degree" make sense in $A \llbracket X \rrbracket$? What about "bottom degree"?
	- (d) Does "top degree" make sense in $A[[X]]$? What about "bottom degree"?
	- (e) Explain why⁵ for a domain A, the power series ring $A[[X_1, \ldots, X_n]]$ is also a domain.

	(b) Show⁶ that $f \in A[[X_1, \ldots, X_n]]$ is a unit if and only if the constant term of f is a unit
	- (f) Show⁶ that $f \in A[[X_1, \ldots, X_n]]$ is a unit if and only if the constant term of f is a unit.
		- (a) To multiply two such formal sums, you would have to take an infinite sum in Λ to compute the coefficient of any X^i .
		- **(b)** To compute the X^3 -coefficient of $f + g$, you just need to know the X^3 -coefficients of f and g. To compute the X^3 -coefficient of fg, you need to know the $1, X, X^2, X^3$ coefficients of f and g .
		- (c) $q = 1 3X 2X^2 + \cdots$.
		- (d) No; yes.
		- (e) For $n = 1$, look at the bottom degree terms. The bottom degree term of the product is the product of the bottom degree terms; if A is a domain, this product is nonzero. The statement just follows by induction on *n*.
		- (f) If f is a unit, then the constant term is a unit, since the constant term of fg is the constant term of f times that of g .

For the other direction, first, take $n = 1$. Given $f = \sum_i a_i X^i$, construct $g =$ $\sum_i b_i X^i$ by defining b_m recursively $b_0 = 1/a_0$ and that the X^m -coefficient of $(\sum_{i=0}^{n} a_i X^i)(\sum_{i=0}^{m} b_i X_i)$ is 0 for $m > 0$: we can do this since, given b_0, \ldots, b_m that work in the mth step, in the next step we can the formula for the X^{m+1} coefficient is $a_0b_{m+1}+a_1b_m+\cdots+a_{m+1}b_0$, since a_0 is a unit, we can solve for b_{m+1} to make this equal

⁴It doesn't matter what the \cdots are!

⁵You might want to start with the case $n = 1$.

⁶Hint: For $n = 1$, given $f = \sum_i a_i X^i$, construct $g = \sum_i b_i X^i$ by defining b_m recursively $b_0 = 1/a_0$ and that the X^m -coefficient of $(\sum_{i=0}^m a_i X^i)(\sum_{i=0}^m b_i X_i)$ is 0 for $m > 0$.

zero without changing the lower coefficients. Continuing this way, take $g = \sum_i b_i X^i$. Then for any k, the X^k-coefficient only depends on the a_0, \ldots, a_k and b_0, \ldots, b_k coefficients, and by construction, this coefficient is zero for $k \ge 1$. Thus, any such f has an inverse. The general claim follows by induction on n: if $f \in A[[X_1, \ldots, X_n]]$ has a unit con-

stant term considered as a power series in $A[[X_1, \ldots, X_n]]$, then its constant term in $(A[[X_1, \ldots, X_{n-1}]])[X_n]$ has a unit constant term, hence is a unit in $A[[X_1, \ldots, X_{n-1}]]$, so f is a unit in $(A[[X_1, ..., X_{n-1}])[X_n]=A[[X_1, ..., X_n]].$

- (4) Elements in function rings.
	- (a) For $R = \text{Fun}([0, 1], \mathbb{R})$,

(ii) What are the units in R ?

- (i) What are the nilpotents in R ?
- (iii) What are the idempotents in R ? (iv) What are the zerodivisors in R ?
- (b) For $R = \mathcal{C}([0, 1], \mathbb{R})$, $R = \mathcal{C}^{\infty}([0, 1], \mathbb{R})$ same questions as above. When are there any/none?
- (a) For $R = \text{Fun}([0, 1], \mathbb{R})$,
	- (i) There are no nilpotents, since for any $\alpha \in [0, 1]$, $f(\alpha)^n = 0$ means that $f(\alpha) = 0$.
	- (ii) The units are the functions that are never zero, since the function $g(x) = 1/f(x)$ is then defined (and conversely).
	- (iii) $f(x)$ is idempotent if $f(\alpha) \in \{0, 1\}$ for all $\alpha \in [0, 1]$.
	- (iv) Any function that is zero at some point is a zerodivisor: if $S = \{ \alpha \in$ $[0, 1]$ $| f(\alpha) = 0$ is nonempty, then let g be a nonzero function that vanishes on $[0, 1] \setminus S$, then $fg = 0$.
- (b) For $R = C([0, 1])$ or $R = C^{\infty}([0, 1]),$
	- (i) Same
	- (ii) Same
	- (iii) There are no nontrivial idempotents: the same condition as above applies, but by continuity, f must either be identically 0 or identically 1.
	- (iv) The difference is that now there may not be a nonzero function that vanishes on $[0, 1] \setminus S$, e.g., if f vanishes at a single point. To be a zerodivisor, the set $[0, 1] \setminus S$ as above must be not be dense.
- (5) Product rings and idempotents.
	- (a) Let R and S be rings, and $T = R \times S$. Show that $(1, 0)$ and $(0, 1)$ are nontrivial complementary idempotents in T.
	- **(b)** Let T be a ring, and $e \in T$ a nontrivial idempotent, with $e' = 1 e$. Explain why $Te = \{te \mid t \in T\}$ and Te' are rings with the same addition and multiplication as T. Why didn't I say "subring"?
	- (c) Let T be a ring, and $e \in T$ a nontrivial idempotent, with $e' = 1 e$. Show that $T \cong Te \times Te'$. Conclude that R has nontrivial idempotents if and only if R decomposes as a product.
		- (a) $(1, 0)^2 = (1, 0), (0, 1)^2 = (0, 1),$ and $(1, 0) + (0, 1) = (1, 1)$ is the "1" of $R \times S$.
		- **(b)** $re + se = (r + s)e$ and $(re)(se) = rse^2 = rse$. Same with e'.
		- (c) Define $\phi : T \to Te \times Te'$ by $\phi(t) = (te, te')$. The verification that this is a ring homomorphism essentially the content of (b). If $\phi(t) = (0,0)$, then $te = 0$ and $0 =$ $te' = t(1 - e) = t - te$, so $t = 0$, hence ϕ is injective. Given $(re, se') \in Te \times Te'$, we have $\phi(re + se') = ((re + se')e, (re + se')e') = (re, se')$, hence ϕ is surjective, as well.
- (6) Elements in quotient rings:
	- (a) Let K be a field, and $R = K[X, Y]/(X^2, XY)$. Find
		- a nonzero nilpotent in R
		- a zerodivisor in R that is not a nilpotent
		- \bullet a unit in R that is not equivalent to a constant polynomial
	- (b) Find $n \in \mathbb{Z}$ such that
		- $[4] \in \mathbb{Z}/(n)$ is a unit
		- $[4] \in \mathbb{Z}/(n)$ is a nonzero nilpotent
- $[4] \in \mathbb{Z}/(n)$ is a nonnilp. zerodivisor
- $[4] \in \mathbb{Z}/(n)$ is a nontrivial idempotent

This solution is embargoed.

- (7) More about elements.
	- (a) Prove that a nilpotent plus a unit is always a unit.
	- (b) Let A be an arbitrary ring, and $R = A[X]$. Characterize, in terms of their coefficients, which elements of R are units, and which elements are nilpotents.
	- (c) Let A be an arbitrary ring, and $R = A||X||$. Characterize, in terms of their coefficients, which elements of R are nilpotents.