EXAMPLE: The following are rings.

- (1) Rings of numbers, like \mathbb{Z} and $\mathbb{Z}[i] = \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}.$
- (2) Given a starting ring A , the polynomial ring in one indeterminate

 $A[X] := \{a_d X^d + \cdots + a_1 X + a_0 \mid d \geq 0, a_i \in A\},\$

or in a (finite or infinite!¹) set of indeterminates $A[X_1, \ldots, X_n]$, $A[X_\lambda \mid \lambda \in \Lambda]$.

(3) Given a starting ring A , the power series ring in one indeterminate

$$
A[\![X]\!] := \left\{ \sum_{i \geq 0} a_i X^i \mid a_i \in A \right\},\,
$$

or in a set of indeterminates $A[[X_1, \ldots, X_n]].$

- (4) For a set X, $\text{Fun}(X,\mathbb{R}) := \{ \text{all functions } f : [0,1] \to \mathbb{R} \}$ with pointwise $+$ and \times .
- (5) $\mathcal{C}([0, 1]) := \{$ continuous functions $f : [0, 1] \to \mathbb{R}\}$ with pointwise $+$ and \times .
- (6) $\mathcal{C}^{\infty}([0,1]) := \{\text{infinitely differentiable functions } f : [0,1] \to \mathbb{R}\}\$ with pointwise $+$ and \times .
- (\div) Quotient rings: given a starting ring A and an ideal I, $R = A/I$.
- (\times) Product rings: given rings R and S, $R \times S = \{(r, s) | r \in R, s \in S\}.$

DEFINITION: An element x in a ring R is called a

- unit if x has an inverse $y \in R$ (i.e., $xy = 1$).
- zerodivisor if there is some $y \neq 0$ in R such that $xy = 0$.
- **nilpotent** if there is some $e \ge 0$ such that $x^e = 0$.
- idempotent if $x^2 = x$.

We also use the terms **nonunit, nonzerodivisor, nonnilpotent, nonidempotent** for the negations of the above. We say that a ring is **reduced** if it has no nonzero nilpotents.

(1) Warmup with units, zerodivisors, nilpotents, and idempotents.

- (a) What are the implications between nilpotent, nonunit, and zerodivisor?
- (b) What are the implications between reduced, field, and domain?
- (c) What two elements of a ring are always idempotents? We call an idempotent nontrivial to mean that it is neither of these.
- (d) If e is an idempotent, show that $e' := 1 e$ is an idempotent² and $ee' = 0$.
- (2) Elements in polynomial rings: Let $R = A[X_1, \ldots, X_n]$ a polynomial ring over a *domain* A.
	- (a) If $n = 1$, and $f, g \in R = A[X]$, briefly explain why the top degree³ of fg equals the top degree of f plus the top degree of g. What if A is not a domain?
	- (b) Again if $n = 1$, briefly explain why $R = A[X]$ is a domain, and identify all of the units in R.
	- (c) Now for general n, show that R is a domain, and identify all of the units in R.

¹Note: Even if the index set is infinite, by definition the elements of $A[X_\lambda | \lambda \in \Lambda]$ are finite sums of monomials (with coefficients in A) that each involve finitely many variables.

²We call e' the **complementary idempotent** to e .

³The top degree of $f = \sum a_i X^i$ is $\max\{k \mid a_k \neq 0\}$; we say top coefficient for a_k . We use the term top degree instead of degree for reasons that will come up later.

- (3) Elements in power series rings: Let A be a ring.
	- (a) Explain why the set of formal sums $\{\sum_{i\in\mathbb{Z}} a_i X_i \mid a_i \in A\}$ with arbitrary positive and negative exponents is *not* clearly a ring in the same way as $A[[X]]$.
	- **(b)** Given series $f, g \in A[[X]]$, how much of f, g do you need to know to compute the X^3 -
coefficient of $f + g$? What about the X^3 -coefficient of $f g$? coefficient of $f + g$? What about the X^3 -coefficient of fg ?
	- (c) Find the first three coefficients for the inverse⁴ of $f = 1 + 3X + 7X^2 + \cdots$ in $\mathbb{R}[X]$.
(d) Does "top degree" make sense in $\mathbb{A}[\![X]\!]$? What about "bottom degree"?
	- (d) Does "top degree" make sense in $A[[X]]$? What about "bottom degree"?
	- (e) Explain why⁵ for a domain A, the power series ring $A[[X_1, \ldots, X_n]]$ is also a domain.

	(b) Show⁶ that $f \in A[[X_1, \ldots, X_n]]$ is a unit if and only if the constant term of f is a unit
	- (f) Show⁶ that $f \in A[[X_1, \ldots, X_n]]$ is a unit if and only if the constant term of f is a unit.
- (4) Elements in function rings.
	- (a) For $R = \text{Fun}([0,1], \mathbb{R}),$
		- (i) What are the nilpotents in R ?

(ii) What are the units in R ?

- (iii) What are the idempotents in R ? (iv) What are the zerodivisors in R ?
- (b) For $R = \mathcal{C}([0, 1], \mathbb{R})$, $R = \mathcal{C}^{\infty}([0, 1], \mathbb{R})$ same questions as above. When are there any/none?
- (5) Product rings and idempotents.
	- (a) Let R and S be rings, and $T = R \times S$. Show that $(1, 0)$ and $(0, 1)$ are nontrivial complementary idempotents in T.
	- **(b)** Let T be a ring, and $e \in T$ a nontrivial idempotent, with $e' = 1 e$. Explain why $Te = \{te \mid t \in T\}$ and Te' are rings with the same addition and multiplication as T. Why didn't I say "subring"?
	- (c) Let T be a ring, and $e \in T$ a nontrivial idempotent, with $e' = 1 e$. Show that $T \cong Te \times Te'$. Conclude that R has nontrivial idempotents if and only if R decomposes as a product.
- (6) Elements in quotient rings:
	- (a) Let K be a field, and $R = K[X, Y]/(X^2, XY)$. Find
		- a nonzero nilpotent in R
		- a zerodivisor in R that is not a nilpotent
		- a unit in R that is not equivalent to a constant polynomial
	- (b) Find $n \in \mathbb{Z}$ such that
		- $[4] \in \mathbb{Z}/(n)$ is a unit
		- $[4] \in \mathbb{Z}/(n)$ is a nonzero nilpotent
- [4] $\in \mathbb{Z}/(n)$ is a nonnilp. zerodivisor
-
-
-
- $[4] \in \mathbb{Z}/(n)$ is a nontrivial idempotent

- (7) More about elements.
	- (a) Prove that a nilpotent plus a unit is always a unit.
	- (b) Let A be an arbitrary ring, and $R = A[X]$. Characterize, in terms of their coefficients, which elements of R are units, and which elements are nilpotents.
	- (c) Let A be an arbitrary ring, and $R = A||X||$. Characterize, in terms of their coefficients, which elements of R are nilpotents.

⁴It doesn't matter what the \cdots are!

⁵You might want to start with the case $n = 1$.

⁶Hint: For $n = 1$, given $f = \sum_i a_i X^i$, construct $g = \sum_i b_i X^i$ by defining b_m recursively $b_0 = 1/a_0$ and that the X^m -coefficient of $(\sum_{i=0}^m a_i X^i)(\sum_{i=0}^m b_i X_i)$ is 0 for $m > 0$.