
WORKSHEET PREVIEWS FOR MATH 905

TABLE OF CONTENTS

Introduction 3
1. Rings, Ideals, and Modules 4
1.1. Rings: Lecture Notes §0.1 4
1.2. Ideals: Lecture Notes §0.1 6
1.3. Algebras: Lecture Notes §1.2 7
1.m Macaulay2 Introduction: Lecture Notes §A.1 9
1.4. Modules: Lecture Notes §0.2, §1.1 10
1.5. Determinants 11
2. Finiteness conditions 12
2.6. Algebra-finite and module-finite maps: Lecture Notes §1.3, 1.4 12
2.7. Integral extensions: Lecture Notes §1.4 13
2.8. UFDs and integral closure 14
2.9. Noetherian rings: Lecture Notes §1.6 15
2.10. Noetherian modules: Lecture Notes §1.6 16
3. Graded rings 17
3.11. Graded rings: Lecture Notes §2.1 17
3.12. Graded modules: Lecture Notes §2.1 19
3.13. Finiteness theorem for invariant rings: Lecture Notes §2.2, §2.3 20
3.14. Rees rings and Artin-Rees 21
4. Nullstellensatz and spectrum 22
4.15. Noether normalization: Lecture Notes §7.3 22
4.16. Nullstellensatz: Lecture Notes §4.3 23
4.17. Strong Nullstellensatz: Lecture Notes §4.3 24
4.18. Spectrum of a ring: Lecture Notes §3.2 25
4.19. Spectrum and radical ideals: Lecture Notes §3.2 26
5. Localization 27
5.20. Local rings and NAK: Lecture Notes §5.1 27
5.21. Localization of rings: Lecture Notes §5.2 28
5.22. Localization of modules: Lecture Notes §5.2 29
5.23. Local Properties: Lecture Notes §5.2, §6.1 30
6. Decompositions of ideals and modules 31
6.24. Minimal primes: Lecture Notes §6.1 31
6.25. Associated primes: Lecture Notes §6.2 32
6.26. Associated primes: Lecture Notes §6.2, §3.3 33
6.27. Primary decomposition: Lecture Notes §6.3 34
6.28. Primary decomposition and uniqueness: Lecture Notes §6.3 35
7. Dimension and affine algebras 36
7.29. Dimension: Lecture Notes §7.1 36
7.30. Cohen-Seidenberg Theorems—Applications to dimension: Lecture Notes §7.2 37
7.31. Cohen-Seidenberg Theorems—Proofs: Lecture Notes §7.2 38
7.32. Noether Normalization and Dimension: Lecture Notes §7.3 39
7.33. Transcendence Degree and Dimension: Lecture Notes §7.3 40



8. Local theory of dimension 41
8.34. Length and simple modules 41

2



INTRODUCTION

What am I? The majority of this document consists of the 1–2 page daily quick summaries that you should
read before each class. These will include some reminders of things from previous algebra courses that we
will use, as well as the statements of definitions and theorems we will encounter in class, so that we aren’t
just wasting class time reading a definition or theorem for the first time. We will not follow any textbook
directly, but most of the material will overlap with the recommended text Atiyah-MacDonald and Grifo’s
Fall 2022 905 notes, the latter of which is available here:

https://eloisagrifo.github.io/Teaching/ca1/CA1notes.pdf

Each course preview references the relevant sections of the sources in this case. Some previews also have
a “Just for fun” at the end: this is either an open question or easily stated fact requiring deeper techniques.
This part of the reading is optional and can be skipped if you don’t like fun.

Mathematical ground rules. In this class, all rings are commutative with 1 6= 0, and all modules are unital,
meaning 1m = m for all m ∈ M . We are assuming as background knowledge the content covered in the
first year algebra sequence Math 817–818.

Using these worksheets.
• To complete a problem on a worksheet means to discuss as a group until every member of the group

understands the solution. I envision solving a “Prove” or “Show that” problem as meaning to know
how to fill in all of the details of a proof (though you might not find it practical to write out a full
proof of everything starting from ZFC), whereas an “Explain” or “Discuss” might not require as
rigorous a solution or might not even be a completely precise question. If you do not understand
your solution or are unsure of something, let your group know: they are probably missing something
or could understand some detail better. Conversely, if someone in your group doesn’t understand the
solution, you should thank them for the opportunity to understand the problem better, as you may
have missed something, or you might understand better by explaining your thoughts if you think
you haven’t.
• The worksheets have some problems numbered in bold (1), some in standard font (2), and some

in italics (3). Those marked in bold (1) you should think of as mandatory, either in class, or after
class if you didn’t get to them. Those in standard font (2) are recommended. Those in italics (3) are
somewhat more for adventure seekers.
• As noted above, the assumed background is Math 817–818. If you’ve taken a Homological Algebra

or Commutative Algebra 2 course or a reading on related topics like Gröbner bases, you might
find that some questions are an easy consequence of some fact about faithfully flat modules, Ext-
modules, regular sequences, or regular rings. You should feel free to enjoy your knowledge in
such cases, but every problem has a solution only using material the background sequence, and you
should find a solution of that type: this is both so that you develop mastery of the notions of basic
commutative algebra and to avoid any logical circularities!

Why are you doing this to me? Math is learned by working through proofs and examples, not by watching
someone else do the work. I could tell you about all of the interesting commutative algebra I know, and I
could mix it in with funny anecdotes and obscure puns, but my algebra will never be your own until you do
it. So we will just skip the step where I read to you: you know how to read anyway. This style of class may
stretch our comfort zone more than a conventional lecture, but it’s a much better approximation of doing
research and writing a thesis than the latter.
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1. RINGS, IDEALS, AND MODULES

1.1. Rings: Lecture Notes §0.1.

• Key examples of rings: polynomial rings, power series rings, and function rings
• Key constructions of rings: quotient rings, product rings, and subrings
• Special elements in rings: units, zerodivisors, nilpotents, and idempotents

Special elements in rings.

DEFINITION: An element x in a ring R is called a
• unit if x has an inverse y ∈ R (i.e., xy = 1).
• zerodivisor if there is some y 6= 0 in R such that xy = 0.
• nilpotent if there is some e ≥ 0 such that xe = 0.
• idempotent if x2 = x.

Polynomial rings. Polynomial rings, and quotients of polynomial rings, will be ubiquitous in this class.
Recall: Given a ring A, the polynomial ring A[X] in one indeterminate X is

A[X] := {adXd + · · ·+ a1X + a0 | d ≥ 0, ai ∈ A}.
We can also form the polynomial ring in finitely many indeterminates A[X1, . . . , Xn], which is the same as
the polynomial ring in one variableXn with coefficients inA[X1, . . . , Xn−1]. We can even take a polynomial
ring in an arbitrary set of indeterminates A[Xλ | λ ∈ Λ], whose elements are finite sums of terms of the
form aXd1

λ1
· · ·Xdk

λk
, a ∈ A. It is often convenient to break up polynomials by degree: the degree t part of a

polynomial is the sum of all of the terms as above with d1 + · · ·+ dk = t. In particular, for a polynomial in
one variable, the degree t part is the X t term (with its coefficient). We will say top degree of a polynomial
to refer to the highest degree term if terms of different degrees occur.

Power series rings. Power series rings, and quotients of power series rings, will also be a main source of
examples for us. Recall: Given a ring A, the power series ring AJXK in one indeterminate X is

AJXK :=
{∑
i≥0

aiX
i | ai ∈ A

}
.

The “infinite summation” is to be thought of formally; infinite addition is not a well-defined operation in
this ring as one cannot make sense of things like X + X + X + · · · . If you get disoriented with a power
series, it is best to proceed one coefficient at a time, going from lowest up towards infinity. For example,
two series f =

∑
i aiX

i and g =
∑

i biX
i, are the same if and only if ai = bi for all i, and to compute fg,

compute the zeroth coefficient a0b0, then the first coefficient a1b0 + a0b1, and so on1. We’ll also consider
multivariate power series rings

AJX1, . . . , XnK := {
∑

i1,...,in≥0

ai1,...,inX
i1
1 · · ·X in

n | ai1,...,in ∈ A} = (AJX1, . . . , Xn−1K)JXnK.

1The only problem is that if you want to write everything out concretely, you have to do this forever.
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Function rings. Various natural collections of functions form rings with pointwise operations + and×; i.e.,
f + g is the function whose value at x is f(x) + g(x). For example:

• Fun([0, 1],R), the set for all functions from [0, 1] to R.
• C([0, 1],R), the set of continuous functions from [0, 1] to R.
• C∞([0, 1],R), the set of infinitely differentiable functions from [0, 1] to R.
• Can([0, 1],R), the set of analytic2 functions from [0, 1] to R.

Product rings. Recall that given two rings R, S we can form the product ring R × S. We can recognize
product rings in many situations:

CHINESE REMAINDER THEOREM: LetR be a ring, and I, J be two ideals such I+J = R. Then IJ = I∩J
and R/IJ ∼= R/I ×R/J .

PROPOSITION: A ring T is isomorphic to a product R×S of two rings if and only if there is an idempotent
e ∈ T with e 6= 0, 1.

Just for fun. There are lots of things we don’t know even about polynomials in one variable over a field.
Here is an open problem:

CASAS-ALVERO CONJECTURE: Let K be a field of characteristic zero. Suppose that f(X) ∈ K[X] is a

monic polynomial of top degree n such that for each i ∈ {1, . . . , n − 1}, f and
dif

dxi
have a common root.

Then f = (X − a)n for some a ∈ K.

For a warmup, can you show that the conclusion holds if all of these derivatives have a common root?
2i.e., functions that agree with a power series on some neighborhood of any point
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1.2. Ideals: Lecture Notes §0.1.

• Generating set of an ideal
• Radical of an ideal
• Division Algorithm

Generating sets.
DEFINITION: Let S be a subset of a ring R. The ideal generated by S, denoted (S) is the smallest ideal
containing S. Equivalently,

(S) =
{∑

risi | ri ∈ R, si ∈ S
}

is the set of R-linear combinations3 of elements of S.

We say that S generates an ideal I if (S) = I .

Constructions with ideals.
DEFINITION: Let I, J be ideals of a ring R. The following are ideals:

• IJ := (ab | a ∈ I, b ∈ J).
• In := I · I · · · I (n times) = (a1 · · · an | ai ∈ I) for n ∈ N.
• I + J := {a+ b | a ∈ I, b ∈ J} = (I ∪ J).
• rI := (r)I = {ra | a ∈ I} for r ∈ R.
• I : J := {r ∈ R | rJ ⊆ I}.

Let φ : R→ S is a ring homomorphism.
• If J is an ideal of S, then φ−1(J) := {r ∈ R |φ(r) ∈ J} is an ideal of R, often denoted J ∩R.
• If I is an ideal of R, then IS := (φ(I)) is an ideal of S.

Radical ideals.
DEFINITION: Let I be an ideal in a ring R. The radical of I is

√
I := {f ∈ R | fn ∈ I for some n ≥ 1}.

An ideal I is radical if I =
√
I .

PROPOSITION: The radical of an ideal is an ideal.

Division Algorithm. You are certainly familiar with the division algorithm in K[X] when K is a field. For
an arbitrary ring in place of K, we can do the same thing as long as we divide by a monic polynomial:

DIVISION ALGORITHM: Let A be a ring. Let g ∈ A[X] be a monic polynomial (i.e., the top X-power
coefficient is a unit). Then for any f ∈ A[X], there are unique polynomials q, r such that the top degree of
r is less than the top degree of g, and f = qg + r.

The division algorithm is often useful for finding generators of an ideal. One can use it in a multivariate
polynomial ring A[X1, . . . , Xn] by thinking of it as a polynomial ring in one variable Xn with coefficients
in A[X1, . . . , Xn−1].

Just for fun. It can be very hard to tell whether an ideal is radical. Here is a well-known open question:

COMMUTING MATRIX PROBLEM: Let K be a field. Let X = [Xi,j]1≤i,j≤n and Y = [Yi,j]1≤i,j≤n be two
n × n matrices of indeterminates, and R = K[X, Y] be a polynomial ring in 2n2 variables. Let I be ideal
generated by the entries4 of the commutator matrix XY − YX. Is I reduced?
4I.e., there are n2 generators of the form Xi,1Y1,j + · · ·+Xi,nYn,j − Yi,1X1,j + · · ·+ Yi,nXn,j for 1 ≤ i, j ≤ n.
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1.3. Algebras: Lecture Notes §1.2.

Key topics:
• Generating sets of algebras
• Presentation of an algebra

Algebras.

DEFINITION: Let A be a ring. An A-algebra is a ring R equipped with a ring homomorphism φ : A→ R;
we call φ the structure morphism of the algebra. Note: the same ring R with different φ’s are different
A-algebras. Despite this we often say “Let R be an A-algebra” without naming the structure morphism. If
R is an A-algebra with structure map φ, then φ(A) ⊆ R. We often consider the special case when φ is an
inclusion map, so A ⊆ R.

DEFINITION: A homomorphism of A-algebras is a ring homomorphism that is compatible with the struc-
ture morphisms; i.e., if φ : A → R and ψ : A → S are A-algebras, then α : R → S is an A-algebra
homomorphism if α ◦ φ = ψ. When φ and ψ are inclusion maps A ⊆ R and A ⊆ S, this just says5

α|A = 1A.

The mapping property of polynomial rings is best expressed in the language of algebras:

UNIVERSAL PROPERTY OF POLYNOMIAL RINGS: Let6 A be a ring, and T = A[X1, . . . , Xn] be a polyno-
mial ring. For any A-algebra R, and any collection of elements r1, . . . , rn ∈ R, there is a unique A-algebra
homomorphism α : T → R such that α(Xi) = ri.

Algebra generators.

DEFINITION: Let A be a ring, and R be an A-algebra. Let S be a subset of R. The algebra generated
by S, denoted A[S], is the smallest A-subalgebra of R containing S. Equivalently,

A[S] = { sums of elements of the form φ(a)ri11 · · · ritt | a ∈ A, rj ∈ S, ij ≥ 0},

where φ is the map from A to R.
It may be helpful to think of an A-algebra R as a ring built from A, and a generating set as a collection

of building blocks that one can use to build R from A with the ring operations.

WARNING: We have used the notation A[stuff] both for polynomial rings in the “stuff” variables and the
algebra generated by “stuff” in some other algebra. It is best practice to make clear which you mean when
there is risk of any confusion. We will also generally use capital letters Xi, X, Y, Z for indeterminates (i.e.,
polynomial and power series variables).

PROPOSITION: Let7 A be a ring, and R be an A-algebra. Then A[r1, . . . , rn] is the image of the A-algebra
homomorphism α : A[X1, . . . , Xn]→ R such that α(Xi) = ri.

5We use 1 for the identity map, and later on, for the identity matrix.
6This is equally valid for polynomial rings in infinitely many variables T = A[Xλ | λ ∈ Λ] with a tuple of elements of
{rλ}λ∈Λ in R in bijection with the variable set. I just wrote this with finitely many variables to keep the notation for getting too
overwhelming.

7This is also equally valid for infinite sets.
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Algebra presentations.

DEFINITION: Let R be an A-algebra. Let r1, . . . , rn ∈ R. The ideal of A-algebraic relations on r1, . . . , rn
is the set of polynomials f(X1, . . . , Xn) ∈ A[X1, . . . , Xn] such that f(r1, . . . , rn) = 0 in R. Equivalently,
the ideal of A-algebraic relations is the kernel of the homomorphism α : A[X1, . . . , Xn] → R given by
α(Xi) = ri. We say that a set of elements in an A-algebra is algebraically independent over A if it has no
nonzero A-algebraic relations.

DEFINITION: A presentation of an A-algebra R consists of a set of generators r1, . . . , rn of R as an
A-algebra and a set of generators f1, . . . , fm ∈ A[X1, . . . , Xn] for the ideal of A-algebraic relations on
r1, . . . , rn. We call f1, . . . , fm a set of defining relations for R as an A-algebra.

PROPOSITION: If R is an A-algebra, and f1, . . . , fm is a set of defining relations for R as an A-algebra,
then R ∼= A[X1, . . . , Xn]/(f1, . . . , fm).

It may be helpful to think of a presentation as a recipe for building R as a ring starting from A. The
proposition above says that a presentation (or just a set of defining relations) is sufficient information to
determine an algebra up to isomorphism.

Just for fun. The most notorious open problem in commutative algebra is easy to state:

JACOBIAN CONJECTURE: Let K be a field of characteristic zero, and R = K[X1, . . . , Xn] be a polynomial
ring over K. Let f1, . . . , fn ∈ R. Then

R = K[f1, . . . , fn] if and only if det


∂f1
∂X1

· · · ∂fn
∂X1... . . . ...

∂f1
∂Xn

· · · ∂fn
∂Xn

 ∈ K×.
Can you see which direction is the hard one? This is open even for n = 3.
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1.m Macaulay2 Introduction: Lecture Notes §A.1.

Key topics:
• Accessing M2
• Defining rings, ideals, maps

Running Macaulay2. Macaulay2 is a computer algebra system with a wide range of functions implemented
for commutative algebra and algebraic geometry. You can run it online at

https://www.unimelb-macaulay2.cloud.edu.au/

You can also install it on your machine, but that isn’t necessary at first. You many want to click the “Editor”
tab, so you can type your commands on the left-side pane. You can execute a line with SHIFT+ENTER.

Basic commands. Here are enough commands to get started.
• Starting rings: Try K=QQ, K=ZZ, or K=ZZ/13
• Polynomial rings: After fixing a starting ring, try R=K[X,Y] or S=K[X_1 .. X_4]
• Ideals: With R as above, try I=ideal(Xˆ2,X*Y) or J=ideal(Xˆ3-2*Xˆ2*Y+7*Yˆ5)
• Ideal containment: With I as above, try (2*Xˆ3-X*Yˆ2)%I or (2*Yˆ3-X*Yˆ2)%I
• Ideal operations: With I and J as above, try I+J, I*J, I:J, Iˆ4, or intersect(I,J)
• Radicals: With I and J as above, try radical I or radical J
• Homomorphisms: With R and S as above, try f=map(R,S,{Xˆ3,Xˆ2*Y,X*Yˆ2,Yˆ3})
• Kernels: With f as above, try ker f
• Quotient rings: With R and I as above, try R/I

Learning more. Go to https://macaulay2.com/ if you want to learn more.
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1.4. Modules: Lecture Notes §0.2, §1.1.

Key topics:
• Generating set of a module
• Presentation of a module

Sources of modules. Here are a few sources of modules:
(1) Every ideal I ⊆ R is a submodule of R.
(2) Every quotient ring R/I is a quotient module of R.
(3) If S is an R-algebra, (i.e., there is a ring homomorphism α : R → S), then S is an R-module by

restriction of scalars: r · s := α(r)s.
(4) More generally, if S is an R-algebra and M is an S-module, then M is also an R-module by

restriction of scalars8: r ·m := α(r) ·m.
(5) Given an n×m matrix A, its image im(A), is the module generated by its columns in Rn.

Free modules. Recall that a module is free if it admits a free basis: a generating set (see below for refresher)
that is linearly independent. Every free module with a basis of n elements is isomorphic to the module Rn

of n-tuples of elements of R. The module Rn has a standard basis e1, . . . , en where ei is the tuple with
i-th entry equal to 1 and every other entry equal to 0. More generally, every free module with a basis that is
bijective to some index set Λ is isomorphic to

R⊕Λ = {(rλ)λ∈Λ | rλ 6= 0 for at most finitely many λ ∈ Λ}.
UNIVERSAL PROPERTY OF FREE MODULES: Let R be a ring, and Rn be a free module. For any A-module
M , and any collection9 of elementsm1, . . . ,mn ∈M , there is a uniqueR-module homomorphism β : Rn →M
such that β(ei) = mi.

Generating sets.
DEFINITION: Let M be an R-module. Let S be a subset of M . The submodule generated by S, denoted10∑

s∈S Rs, is the smallest R-submodule of M containing S. Equivalently,∑
s∈S

Rs =
{∑

risi | ri ∈ R, si ∈ S
}

is the set of R-linear combinations of elements of S.

We say that S generates M if M =
∑

s∈S Rs.

PROPOSITION: Let11 R be a ring, and M be an R-module. Then
∑

iRmi is the image of the R-module
homomorphism β : Rn →M such that β(ei) = mi.

Module presentations.
DEFINITION: Let M be an R-module. Let m1, . . . ,mn ∈ M . The module of R-linear relations on
m1, . . . ,mn is the set of n-tuples [r1, . . . , rn]tr ∈ Rn such that

∑
i rimi = 0 in R. Equivalently, the

submodule of R-linear relations is the kernel of the homomorphism β : Rn →M such that β(ei) = mi.
DEFINITION: A (finite12) presentation of an R-algebra M consists of a set of generators m1, . . . ,mn of
M as an R-module and a set of generators v1, . . . , vm ∈ Rn for the submodule of R-linear relations on
m1, . . . ,mn. We call the n×m matrix with columns v1, . . . , vm a presentation matrix for M .
PROPOSITION: If M is an R-module, and A is an n×m presentation matrix for M , then M ∼= Rn/im(A).

8Note that if R ⊆ S, then the name “restriction of scalars” is spot-on; we are literally restricting which scalars can be used.
9This is equally valid for free modules in infinitely basis elements R⊕Λ with a tuple of elements {mλ}λ∈Λ in M in bijection with
the free basis. I just wrote this with finitely many basis elements to keep the notation for getting too overwhelming.

10If S = {m} is a singleton, we just write Rm, and if S = {m1, . . . ,mn}, we may write
∑
iRmi.

11This is also equally valid for infinite sets.
12We leave it to you to state the definition of an infinite presentation.
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1.5. Determinants.

Key topics:
• Matrices and linear combinations
• The adjoint trick
• Ideals of minors

Matrices and linear combinations. Recall that given matrices A and B, the matrix product AB consists
of linear combinations, namely: Each column of AB is a linear combinations of the columns of A, with
coefficients/weights coming from the corresponding columns of B. That is,(

col j of AB
)

=
t∑
i=1

bij ·
(
col i of A);

note that b1j, . . . , btj is the j-th column of B. This makes sense whenever one of our matrices has entries
in a ring R and the other has entries in a module M . In particular, given m1, . . . ,mn ∈ M , we can write[
m1 · · · mn

]
B, for some n × m matrix B with entries in R, as a recipe for b linear combinations of

our starting elements, with coefficients/weights given by the columns of B. Note that there is no difference
between

∑
jmjbi,j and

∑
j bi,jmj: over a commutative ring, acting on the left and acting on the right makes

no difference.

Determinants. Recall that, for a ring R, the determinant is a function det : Matn×n(R)→ R such that:
(1) det is a polynomial expression of the entries of A of degree n.
(2) det is a linear function of each column.
(3) det(A) = 0 if the columns are linearly dependent.
(4) det(AB) = det(A) det(B).
(5) det can be computed by Laplace expansion along a row/column.
(6) det(A) = det(Atr).
(7) If φ : R → S is a ring homomorphism, and φ(A) is the matrix obtained from A by applying φ to

each entry, then det(φ(A)) = φ(det(A)).
(?) det(A)1n = AadjA = AAadj, where

(Aadj)ij = (−1)i+j det(matrix obtained from A by removing row j and column i).

Property (?) is sometimes called the ADJOINT TRICK.

EIGENVECTOR TRICK: LetA be an n×nmatrix, v ∈ Rn, and r ∈ R. IfAv = rv, then det(r1n−A)v = 0.
Likewise, for a row vector w, if wA = rw, then det(r1n − A)w = 0.

Ideals of minors.
DEFINITION: Given an n×m matrix A and 1 ≤ t ≤ min{m,n} the ideal of t× t minors of A is the ideal
generated by the determinants of all t × t submatrices of A given by choosing t rows and t columns. For
t = 0, we set I0(A) = R and for t > min{m,n} we set It(A) = 0.

PROPOSITION: Let A be an n×m matrix and B be an m× ` matrix over R.
(1) It+1(A) ⊆ It(A).
(2) It(AB) ⊆ It(A) ∩ It(B).

PROPOSITION: Let M be a finitely presented module. Suppose that A is an n × m presentation matrix
for M . Then In(A)M = 0. Conversely, if fM = 0, then f ∈ In(A)n.
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2. FINITENESS CONDITIONS

2.6. Algebra-finite and module-finite maps: Lecture Notes §1.3, 1.4.

Key topics:
• Algebra-finite and module-finite maps
• Module-finite =⇒ algebra-finite
• Integral elements

Algebra-finite and module-finite maps.

DEFINITION: Let φ : R→ S be a ring homomorphism.
• We say that φ is algebra-finite, or that S is algebra-finite over R, if S is a finitely generated R-algebra.
• We say that φ is module-finite, or that S is module-finite over R, if S is a finitely generated R-module.
These are relative finiteness conditions for a ring S.

We have already seen examples of maps that are algebra-finite, and examples that are not algebra-finite;
likewise for module-finite. A map φ : R→ S is algebra-finite (or module-finite) if and only if φ(R) ⊆ S is
algebra-finite (respectively, module-finite), so we will sometimes just focus on inclusion maps.

PROPOSITION: Let R→ S and S → T be ring homomorphisms.
• If R→ S and S → T are algebra-finite, then the composition R→ T is algebra-finite.
• If R→ S and S → T are module-finite, then the composition R→ T is module-finite.

LEMMA: A module-finite map is algebra-finite. The converse is false.

Integral elements.

DEFINITION: Let R be an A-algebra. We say that an element r ∈ R is integral over A if r satisfies a monic
polynomial with coefficients in A; that is, there exists n > 0 and a1, . . . , an ∈ A such that

rn + a1r
n−1 + · · ·+ an = 0.

An integral element is algebraic over A (i.e., {r} is not algebraically independent over A), but integral is a
stronger condition than algebraic. Note that r is integral over A if and only if it is integral over the image of
A in R.

PROPOSITION: Let R be an A-algebra. If r1, . . . , rn ∈ R are integral over A, then A[r1, . . . , rn] is module-
finite over A.

Just for fun. Questions about algebra-finiteness can be incredibly difficult. Among Hilbert’s highly influ-
ential list of twenty three problems posed at the beginning of the twentieth century is the following:

HILBERT’S 14TH PROBLEM: Let K be a field and R = K[X1, . . . , Xn] be a polynomial ring. Let L be a
subfield of the rational function field K(X1, . . . , Xn) (i.e., the fraction field of R). Is R ∩ L algebra-finite
over K?

The first counterexample to this well-known problem was given sixty years later by Nagata. Is it any easier
if n = 1?

12



2.7. Integral extensions: Lecture Notes §1.4.

Key topics:
• Integral extensions
• Module-finite⇐⇒ algebra-finite & integral
• Integral closure of a ring
• Integral extension and fields

Integral extensions.

DEFINITION: Let φ : A→ R be a ring homomorphism. We say that φ is integral or that R is integral over
A if every element of R is integral over A.

This is another relative finiteness condition for a ring R.

THEOREM: A homomorphism φ : A→ R is module-finite if and only if it is algebra-finite and integral. In
particular, every module-finite extension is integral.

COROLLARY 1: An algebra generated by integral elements is integral.

COROLLARY 2: If R ⊆ S is integral, and x is integral over S, then x is integral over R.

Integral extensions force rings to be closely related. This is a theme that will be important for us later on.
As a first case of this principle, we have:

PROPOSITION: Let R ⊆ S be an integral extension of domains. Then R is a field if and only if S is a field.

Integral closure.

DEFINITION: Let A be a ring, and R be an A-algebra. The integral closure of A in R is the set of elements
in R that are integral over A.

It is not obvious from the definition, but the integral closure of A in R is a ring.

Just for fun. Here is an innocuous looking fact:

THEOREM: Let K be a field, and f1, . . . , fn+1 ∈ K[X1, . . . , Xn] be n+ 1 polynomials in n variables. Then
fn1 · · · fnn+1 ∈ (fn+1

1 , . . . , fn+1
n+1 ).

For example, if f, g, h ∈ K[X, Y ], then f 2g2h2 ∈ (f 3, g3, h3).

The only proof of this fact that I know of uses deep facts about integral closure! Is it easy when n = 1?
What about when n = 2?

13



2.8. UFDs and integral closure.

Key topics:
• Normal rings
• UFD =⇒ normal
• Polynomial rings are UFDs

DEFINITION: Let R be a domain. The normalization of R is the integral closure of R in Frac(R). We say
that R is normal if it is equal to its normalization, i.e., if R is integrally closed in its fraction field.

DEFINITION: LetK be a module-finite field extension of Q. The ring of integers inK, sometimes denoted
OK , is the integral closure of Z in K.

PROPOSITION: If R is a UFD, then R is normal.

LEMMA: A domain is a UFD if and only if
(1) Every nonzero element has a factorization13 into irreducibles, and
(2) Every irreducible element generates a prime ideal.

THEOREM: If R is a UFD, then the polynomial ring R[X] is a UFD.

The proof of the previous theorem largely follows from the following fact from Math 818:

GAUSS’ LEMMA: Let R be a UFD and K be the fraction field of R.
(1) f ∈ R[X] is irreducible if and only if f is irreducible in K[X] and the coefficients of f have no

common factor.
(2) Let r ∈ R be irreducible, and f, g ∈ R[X]. If r divides every coefficient of fg, then either r divides

every coefficient of f , or r divides every coefficient of g.

13That is, for any r ∈ R, there exists a unit u and a finite (possibly empty) list of irreducibles a1, . . . , an such that r = ua1 · · · an
14



2.9. Noetherian rings: Lecture Notes §1.6.

Key topics:
• Noetherian rings: definition and equivalences
• Hilbert Basis Theorem

DEFINITION: A ring R is Noetherian if every ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · eventually
stabilizes: i.e., there is some N such that In = IN for all n ≥ N .

Here are some equivalent conditions for a ring to be Noetherian:
• R is Noetherian if and only if every nonempty collection of ideals has a maximal14 element.
• R is Noetherian if and only if every ideal is finitely generated.

HILBERT BASIS THEOREM: If R is a Noetherian ring, then the polynomial ring R[X] and power series
ring RJXK are also Noetherian.

We will return to the proof of Hilbert Basis Theorem after discussing Noetherian modules next time.

COROLLARY: Every finitely generated algebra over a field is Noetherian.

PRINCIPLE OF NOETHERIAN INDUCTION: Let P be a property of a ring. Suppose that “For every nonzero
ideal I , P is true for R/I implies that P is true for R”. Then P is true for every Noetherian ring.

14Warning: This means that if S is our collection of ideals, there is some I ∈ S such that no J ∈ S properly contains I . It does
not mean that there is a maximal ideal in S.
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2.10. Noetherian modules: Lecture Notes §1.6.

Key topics:
• Noetherian modules
• Noetherianity vs finite generation
• Proof of Hilbert Basis Theorem

DEFINITION: A module is Noetherian if every ascending chain of submodules M1 ⊆ M2 ⊆ M3 ⊆ · · ·
eventually stabilizes: i.e., there is some N such that Mn = MN for all n ≥ N .

Here are some equivalent conditions for a module to be Noetherian:
• M is Noetherian if and only if every nonempty collection of submodules has a maximal15 element.
• M is Noetherian if and only if every submodule is finitely generated.

THEOREM: If R is a Noetherian ring, then a module M is Noetherian if and only M is finitely generated.

COROLLARY: If R is a Noetherian ring, then a submodule of a finitely generated module is finitely gener-
ated.

LEMMA: Let M be a module and N ⊆ M a submodule. Let L,L′ be two more submodules of M . Then

L = L′ if and only if L ∩N = L′ ∩N and
L+N

N
=
L′ +N

N
.

15This means that if S is our collection of submodules, there is some L ∈ S such that no L′ ∈ S properly contains L.
16



3. GRADED RINGS

3.11. Graded rings: Lecture Notes §2.1.

Key topics:
• Definition of graded ring, homogeneous element, homogeneous ideal
• Examples of graded rings

Graded rings, homogeneous elements and ideals. Some rings have a notion of “degree” that behaves anal-
ogously to degree in polynomial rings. This ends up being very useful for multiple reasons. It comes with
an unescapable list of definitions though.

DEFINITION:
(1) An N-grading on a ring R is

• a decomposition of R as additive groups R =
⊕

d≥0Rd

• such that x ∈ Rd and y ∈ Re implies xy ∈ Rd+e.
(2) An N-graded ring is a ring with an N-grading.
(3) We say that an element x ∈ R in an N-graded ring R is homogeneous of degree n if x ∈ Rn.
(4) The homogeneous decomposition of an nonzero16 element r in an N-graded ring is the sum

r = rd1 + · · ·+ rdk where rdi 6= 0 is homogeneous of degree di and d1 < · · · < dk.

The element rdi is the homogeneous component r of degree di.
(5) An ideal I in an N-graded ring is homogeneous if r ∈ I implies that every homogenous component

of r is in I . (Equivalently, I is generated by homogeneous elements.)
(6) A homomorphism φ : R→ S between N-graded rings is graded if φ(Rd) ⊆ Sd for all d ∈ N.

DEFINITION: For an abelian semigroup (G,+), one defines G-grading as above with G in place of N and
g ∈ G in place of d ≥ 0. The other definitions above make sense in this context.

Examples of graded rings:
• The main example of a graded ring is a polynomial ring R = K[X1, . . . , Xn] with the standard

grading, where Rd is the K-vector space with basis given by monomials Xd1
1 · · ·Xdn

n such that
d1 + · · ·+ dn = d.
• There are also weighted gradings on R: given a1, . . . , an ∈ N, instead take Rd to be the K-vector

space with basis given by monomials Xd1
1 · · ·Xdn

n such that a1d1 + · · ·+ andn = d.
• One also has the fine grading on R. This is the Nn-grading where R(d1,...,dn) = K ·Xd1

1 · · ·Xdn
n .

• Quotients of graded rings by homogeneous ideals are graded: If R is a G-graded ring and I ⊆ R is
homogeneous, then R/I is G-graded with (R/I)g = {r | r ∈ Rg}.
• Let R = K[X1, . . . , Xn] be a polynomial ring over a field, considered with the fine grading. The

homogeneous ideals of R in the fine grading are exactly the monomial ideals—ideals generated by
monomials.
• Let R = K[X1, . . . , Xn] be a polynomial ring over a field. Let S be a subs4migroup of Nn with

operation + and identity 0. The semigroup ring of S is

K[S] :=
∑
α∈S

KXα ⊆ R, where Xα := Xα1
1 · · ·Xαn

n .

16If we must speak of the homogeneous decomposition of 0, it would be the empty sum.
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The graded K-subalgebras of R in the fine grading are exactly the semigroup rings for semigroups
of Nn.
• DEFINITION: Let K be a field, and R = K[X1, . . . , Xn] be a polynomial ring. Let G be a group

acting onR so that for every g ∈ G, r 7→ g·r is aK-algebra homomorphism. The ring of invariants
of G is

RG := {r ∈ R | for all g ∈ G, g · r = r}.
Suppose that G acts by graded homomorphisms (thinking of R with the standard grading); equiv-
alently, g · Xi is homogeneous of degree one for each i. Then RG is an N-graded K-subalgebra
of R.
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3.12. Graded modules: Lecture Notes §2.1.

Key topics:
• Basic terminology of graded modules
• Graded NAK
• Minimal generating sets

DEFINITION: Let R be an N-graded ring with graded pieces Ri. A Z-grading on an R-module M is
• a decomposition of M as additive groups M =

⊕
e∈ZMe

• such that r ∈ Rd and m ∈Me implies rm ∈Md+e.
An Z-graded module is a module with a Z-grading. As with rings, we have the notions of homogeneous el-
ements of M , the degree of a homogeneous element, homogeneous decomposition of an arbitrary element
of M . A homomorphism φ : M → N between graded modules is degree-preserving if φ(Me) ⊆ Ne.

GRADED NAK 1: Let R be an N-graded ring, and R+ be the ideal generated by the homogeneous elements
of positive degree. Let M be a Z-graded module. Suppose that M�0 = 0; that is, there is some n ∈ Z such
that Mt = 0 for t ≤ n. Then M = R+M implies M = 0.

GRADED NAK 2: Let R be an N-graded ring and M be a Z-graded module with M�0 = 0. Let N be a
graded submodule. Then M = N +R+M if and only if M = N .

GRADED NAK 3: Let R be an N-graded ring and M be a Z-graded module with M�0 = 0. Then a set of
homogeneous elements S ⊆M generates M if and only if the image of S in M/R+M generates M/R+M
as a module over R0

∼= R/R+.

DEFINITION: Let R be an N-graded ring with R0 = K a field. Let M be a a Z-graded module with
M�0 = 0. A set S of homogeneous elements of M is a minimal generating set for M if the image of S in
M/R+M is an K-vector space basis.
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3.13. Finiteness theorem for invariant rings: Lecture Notes §2.2, §2.3.

Key topics:
• Hilbert’s finiteness theorem and its proof
• Structure theorem for Noetherian graded rings
• Direct summands

Our goal is to prove the following Theorem, which was the main theorem in Hilbert’s 1890 paper that is
considered by many to be the starting point of Commutative Algebra.

HILBERT’S FINITENESS THEOREM: Let K be a field of characteristic zero, and R = K[X1, . . . , Xn] be
a polynomial ring. Let G be a finite group acting on R by degree-preserving automorphisms. Then the
invariant ring RG is algebra-finite over K.

The theorem has two main ingredients that are interesting in their own right:

THEOREM: Let R be an N-graded ring. Then R is Noetherian if and only if R0 is Noetherian and R is
algebra-finite over R0.

DEFINITION: Let R ⊆ S be an inclusion of rings. We say that R is a direct summand of S if there is an
R-module homomorphism π : S → R such that π|R = 1R.

PROPOSITION: A direct summand of a Noetherian ring is Noetherian.

To use apply these, the following will obviously be relevant:

LEMMA: In the setting of Hilbert’s finiteness Theorem,
(1) RG is N-graded with (RG)0 = K.
(2) RG is a direct summand of R.
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3.14. Rees rings and Artin-Rees.

Key topics:
• Rees ring of an ideal
• Associated graded ring of an ideal
• Artin-Rees Lemma

DEFINITION: Let R be a ring and I be an ideal. The Rees ring of I is the N-graded R-algebra

R[IT ] :=
⊕
d≥0

IdT d = R⊕ IT ⊕ I2T 2 ⊕ · · ·

with multiplication determined by (aT d)(bT e) = abT d+e for a ∈ Id, b ∈ Ie (and extended by the dis-
tributive law for nonhomogeneous elements). Here In means the nth power of the ideal I in R, and t is an
indeterminate. Equivalently, R[IT ] is the R-subalgebra of the polynomial ring R[T ] generated by IT , with
R[T ] is given the standard grading R[T ]d = R · T d.

DEFINITION: Let R be a ring and I be an ideal. The associated graded ring of I is the N-graded ring

grI(R) :=
⊕
d≥0

(Id/Id+1)T d = R/I ⊕ (I/I2)T ⊕ (I2/I3)T 2 ⊕ · · ·

with multiplication determined by (a + Id+1T d)(b + Ie+1T e) = ab + Id+e+1 T d+e for a ∈ Id, b ∈ Ie (and
extended by the distributive law). For an element r ∈ R, its initial form in grI(R) is

r∗ :=

{
(r + Id+1)T d if r ∈ Id r Id+1

0 if r ∈
⋂
n≥0 I

n.

ARTIN-REES LEMMA: Let R be a Noetherian ring, I an ideal of R, M a finitely generated module, and
N ⊆M a submodule. Then there is a constant17 c ≥ 0 such that for all n ≥ c, we have InM ∩N ⊆ In−cN .
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4. NULLSTELLENSATZ AND SPECTRUM

4.15. Noether normalization: Lecture Notes §7.3.

Key topics:
• Noether normalization
• Zariski’s Lemma
• Useful variants on Noether normalization

NOETHER NORMALIZATION: LetK be a field, andR be a finitely-generatedK-algebra. Then there exists a
finite18 set of elements f1, . . . , fm ∈ R that are algebraically independent overK such thatK[f1, . . . , fm] ⊆ R
is module-finite; equivalently, there is a module-finite injective K-algebra map from a polynomial ring
K[X1, . . . , Xm] ↪→ R. Such a ring S is called a Noether normalization for R.

LEMMA: Let A be a ring, and F ∈ R := A[X1, . . . , Xn] be a nonzero polynomial. Then there exists
an A-algebra automorphism φ of R such that φ(F ), viewed as a polynomial in Xn with coefficients in
A[X1, . . . , Xn−1], has top degree term aX t

n for some a ∈ Ar 0 and t ≥ 0.
• If A = K is an infinite field, one can take φ(Xn) = Xn and φ(Xi) = Xi + λiXn for some
λ1, . . . , λn−1 ∈ K.
• In general, if the top degree ofF (with respect to the standard grading) isD, one can take φ(Xn) = Xn

and φ(Xi) = Xi +XDn−i

n for i < n.

ZARISKI’S LEMMA: An algebra-finite extension of fields is module-finite.

USEFUL VARIATIONS ON NOETHER NORMALIZATION:
• NN FOR DOMAINS: Let A ⊆ R be a module-finite inclusion of domains19. Then there exists
a ∈ A r 0 and f1, . . . , fm ∈ R[1/a] that are algebraically independent over A[1/a] such that
A[1/a][f1, . . . , fm] ⊆ R[1/a] is module-finite.
• GRADED NN: Let K be an infinite field, and R be a standard graded K-algebra. Then there exist

algebraically independent elements L1, . . . , Lm ∈ R1 such that K[L1, . . . , Lm] ⊆ R is module-
finite.
• NN FOR POWER SERIES: Let K be an infinite field, and R = KJX1, . . . , XnK/I . Then there exists

a module-finite injection KJY1, . . . , YmK ↪→ R for some power series ring in m variables.
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4.16. Nullstellensatz: Lecture Notes §4.3.

Key topics:
• Zero-set of an ideal
• Nullstellensatz
• Maximal ideals in polynomial rings over algebraically closed fields

DEFINITION: Let K be a field and R = K[X1, . . . , Xn]. For a set of polynomials S ⊆ R, we define the
zero-set of solution set of S to be

Z(S) := {(a1, . . . , an) ∈ Kn | F (a1, . . . , an) = 0 for all F ∈ S}.

NULLSTELLENSATZ: Let K be an algebraically closed field, and R = K[X1, . . . , Xn] be a polynomial
ring. Let I ⊆ R be an ideal. Then Z(I) = ∅ if and only if I = R is the unit ideal.

Put another way, a set S of multivariate polynomials has a common zero unless there is a “certificate of
infeasibility” consisting of f1, . . . , ft ∈ S and r1, . . . , rt ∈ R such that

∑
i risi = 1.

PROPOSITION: LetK be an algebraically closed field, andR = K[X1, . . . , Xn] be a polynomial ring. Every
maximal ideal of R is of the form mα = (X1 − a1, . . . , Xn − an) for some point α = (a1 . . . , an) ∈ Kn.
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4.17. Strong Nullstellensatz: Lecture Notes §4.3.

Key topics:
• Strong Nullstellensatz
• Correspondence between radical ideals and subvarieties

STRONG NULLSTELLENSATZ: Let K be an algebraically closed field, and R = K[X1, . . . , Xn] be a
polynomial ring. Let I ⊆ R be an ideal. Then f vanishes at every point of Z(I) if and only if f ∈

√
I .

DEFINITION: Let K be a field and R = K[X1, . . . , Xn]. A subvariety of Kn is a set of the form Z(S) for
some set of polynomials S ⊆ R; i.e., a solution set of some system of polynomial equations.

COROLLARY: Let K be an algebraically closed field. There is a bijection

{radical ideals in K[X1, . . . , Xn]} ←→ {subvarieties of Kn}.
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4.18. Spectrum of a ring: Lecture Notes §3.2.

Key topics:
• Spectrum of a ring as a set
• Zariski topology on Spec(R)
• Properties of V I(I) and D(I)
• Induced map on Spec

DEFINITION: Let R be a ring, and I ⊆ R a subset of R.
• The spectrum of a ring R, denoted Spec(R), is the set of prime ideals of R.
• We set V (I) := {p ∈ Spec(R) | I ⊆ p}, the set of primes containing I .
• We set D(I) := {p ∈ Spec(R) | I 6⊆ p}, the set of primes not containing I .
• More generally, for any subset S ⊆ R, we define V (S) and D(S) analogously.

DEFINITION/PROPOSITION: The collection {V (I) | I an ideal of R} is the collection of closed subsets of
a topology on R, called the Zariski topology; equivalently, the open sets are D(I) for I an ideal of R.

DEFINITION: Let φ : R → S be a ring homomorphism. Then the induced map on Spec corresponding to
φ is the map φ∗ : Spec(S)→ Spec(R) given by φ∗(p) := φ−1(p).

LEMMA: Let p be a prime ideal. Let Iλ, J be ideals.
(1)
∑

λ Iλ ⊆ p⇐⇒ Iλ ⊆ p for all λ.
(2) IJ ⊆ p⇐⇒ I ⊆ p or J ⊆ p
(3) I ∩ J ⊆ p⇐⇒ I ⊆ p or J ⊆ p
(4) I ⊆ p⇐⇒

√
I ⊆ p
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4.19. Spectrum and radical ideals: Lecture Notes §3.2.

Key topics:
• Correspondence between radical ideals and closed subsets
• Multiplicatively closed subsets
• Minimal primes

FORMAL NULLSTELLENSATZ: Let R be a ring, I an ideal, and f ∈ R. Then V (f) ⊇ V (I) if and only if
f ∈
√
I .

COROLLARY 1: Let R be a ring. There is a bijection

{radical ideals in R} ←→ {closed subsets of Spec(R)}.

DEFINITION: Let R be a ring and I an ideal. A minimal prime of I is a prime p that contains I , and is
minimal among primes containing I . We write Min(I) for the set of minimal primes of I .

Lemma: Every prime that contains I contains a minimal prime of I .

COROLLARY 2: Let R be a ring and I be an ideal. Then
√
I =

⋂
p∈Min(I)

p.

DEFINITION: A subset W of a ring R is multiplicatively closed if 1 ∈ W and u, v ∈ W implies uv ∈ W .

PROPOSITION: Let R be a ring and W be a multiplicatively closed subset. Then every ideal I such that
I ∩W = ∅ is contained in a prime ideal p such that p ∩W = ∅.
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5. LOCALIZATION

5.20. Local rings and NAK: Lecture Notes §5.1.

Key topics:
• Definitions of local ring
• General NAK
• Local NAK
• Minimal generating sets

DEFINITION: A ring is local if it has a unique maximal ideal. We write (R,m) for a local ring to denote the
ring R and the maximal ideal m; we many also write (R,m, k) to indicate the residue field k := R/m.

GENERAL NAK: Let R be a ring, I an ideal, and M be a finitely generated module. If IM = M , then
there is some a ∈ R such that a ≡ 1 mod I and aM = 0.

LOCAL NAK 1: Let (R,m) be a local ring and M be a finitely generated module. If M = mM , then
M = 0.

LOCAL NAK 2: Let (R,m) be a local ring and M be a finitely generated module. Let N be a submodule
of M . Then M = N + mM if and only if M = N .

LOCAL NAK 3: Let (R,m, k) be a local ring and M be a finitely generated module. Then a set of elements
S ⊆M generates M if and only if the image of S in M/mM generates M/mM as a k-vector space.

Note: Any of the four NAK statements above would generally be referred to as NAK or Nakayama’s
Lemma. The “General” vs “local” and the numbers are just there for our own convenience to reference.

DEFINITION: Let (R,m, k) be a local ring and M be a finitely generated module. A set of elements S of M
is a minimal generating set for M if the image of S in M/mM is a basis for M/mM as a k-vector space.
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5.21. Localization of rings: Lecture Notes §5.2.

Key topics:
• Localization of a ring
• The key localizations Rf , Rp, and the total quotient ring.
• Correspondence between primes in localizations and primes in the original ring.

DEFINITION: Let R be a ring and W a multiplicatively closed subset with 0 /∈ W . The localization W−1R
is the ring with

• elements equivalence classes of (r, w) ∈ R×W , with the class of (r, w) denoted as
r

w
.

• with equivalence relation
s

u
=
t

v
if there is some w ∈ W such that w(sv − tu) = 0,

• addition given by
s

u
+
t

v
=
sv + tu

uv
, and

• multiplication given by
s

u

t

v
=
st

uv
.

(If 0 ∈ W , then W−1R := 0, which by our convention is not a ring.)

DEFINITION: Let R be a ring.
• If f ∈ R is nonnilpotent20, then Rf := {1, f, f 2, . . . }−1R.
• If p ⊆ R is a prime ideal then Rp := (Rr p)−1R.
• The total quotient ring of R is Frac(R) := {w ∈ R | w is a nonzerodivisor}−1R.

For a ring R, multiplicative set W 63 0, and an ideal I , we define W−1I :=
{ a
w
∈ W−1R | a ∈ I

}
.

LEMMA: Let R be a ring and W be a multiplicatively closed subset.
(1) For any ideal I ⊆ R, W−1I = I(W−1R).
(2) For any ideal I ⊆ R, W−1I ∩R = {r ∈ R | ∃w ∈ W : wr ∈ I}.
(3) For any ideal J ⊆ W−1R, W−1(J ∩R) = J .
(4) For any prime ideal p ⊆ R with p ∩W = ∅, W−1p is prime.
(5) The map Spec(W−1R)→ Spec(R) is injective with image {p ∈ Spec(R) | p ∩W = ∅}.

20If f is nilpotent, 0 ∈ {1, f, f2, . . . } so Rf = 0.
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5.22. Localization of modules: Lecture Notes §5.2.

Key topics:
• Localization of a module
• Localization & subs and quotients
• Spectrum of localization & quotient

DEFINITION: Let R be a ring, M an R-module, and W a multiplicatively closed subset. The localization
W−1M is the W−1R-module21 with

• elements equivalence classes of (m,w) ∈M ×W , with the class of (m,w) denoted as
m

w
.

• with equivalence relation
m

u
=
n

v
if there is some w ∈ W such that w(vm− un) = 0,

• addition given by
m

u
+
n

v
=
vm+ un

uv
, and

• action given by
r

u

m

v
=
rm

uv
.

If α : M → N is a homomorphism of R-modules, then the W−1R-module homomorphism
W−1α : W−1M → W−1N is defined by W−1α(m

w
) = α(m)

w
.

DEFINITION: Let R be a ring and M a module.
• If f ∈ R, then Mf := {1, f, f 2, . . . }−1M .
• If p ⊆ R is a prime ideal then Mp := (Rr p)−1M .

PROPOSITION: Let R be a ring, W a multiplicatively closed set, and N ⊆M be modules. Then
• W−1N is a submodule of W−1M , and

• W−1(M/N) ∼=
W−1M

W−1N
.

COROLLARY: LetR be a ring, I an ideal, andW a multiplicatively closed subset. Then the mapR→ W−1(R/I)
induces an order preserving bijection

Spec(W−1(R/I))
∼−→ {p ∈ Spec(R) | p ⊇ I and p ∩W = ∅}.

21If 0 ∈W , then W−1R is zero, which is not a ring; W−1M is also zero.
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5.23. Local Properties: Lecture Notes §5.2, §6.1.

Key topics:
• Preserved by localization
• Local property
• Support of a module

DEFINITION: Let P be a property22 of a ring. We say that
• P is preserved by localization if

P holds for R =⇒ for every multiplicatively closed set W , P holds for W−1R.

• P is a local property if

P holds for R⇐⇒ for every prime ideal p ∈ Spec(R), P holds for Rp.

One defines preserved by localization and local property for properties of modules in the same way, or
for properties of a ring element (where one considers r

1
∈ W−1R or Rp in the right-hand side) or module

element.

The point is that many properties are local properties, and we can reduce many statements to the case where
R is a local ring. In this setting, we have extra tools, like NAK.

DEFINITION: The support of a module M is

SuppR(M) := {p ∈ Spec(R) |Mp 6= 0}.

PROPOSITION: If M is a finitely generated module, then Supp(M) = V (annR(M)).

22For example, two properties of a ring are “is reduced” or “is a domain”.
30



6. DECOMPOSITIONS OF IDEALS AND MODULES

6.24. Minimal primes: Lecture Notes §6.1.

Key topics:
• Minimal primes in Noetherian rings
• Minimal primes and radical ideals

THEOREM: Let R be a Noetherian ring. Every ideal of R has finitely many minimal primes.

LEMMA: Let R be a ring, I an ideal, and p1, . . . , pt a finite set of incomparable prime ideals; i.e., pi 6⊆ pj
for any i 6= j. If I = p1 ∩ · · · ∩ pt, then Min(I) = {p1, . . . , pt}.

COROLLARY: Let R be a Noetherian ring. Every radical ideal of R can be written as a finite intersection of
primes in a unique way such that no term can be omitted.
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6.25. Associated primes: Lecture Notes §6.2.

Key topics:
• Associated primes and witnesses
• Associated primes and Noetherian rings
• Associated primes and zerodivisors
• Associated primes and localization

DEFINITION: Let R be a ring and M be a module. A prime ideal p of R is an associated prime of M if
p = annR(m) for some m ∈ M . The element m is called a witness for the associated prime p. We write
AssR(M) for the set of associated primes of a module.

LEMMA: Let R be a Noetherian ring and M be a module. For any nonzero element m ∈ M , the ideal
annR(m) is contained in an associated prime of M . In particular, if M 6= 0, then M has an associated
prime.

DEFINITION: Let R be a ring and M be an R-module. We say that an element r ∈ R is a zerodivisor on
M if there is some m ∈M r 0 such that rm = 0.

PROPOSITION: Let R be a Noetherian ring and M an R-module. The set of zerodivisors on M is the union
of the associated primes of M .

THEOREM: Let R be a Noetherian ring, W be a multiplicatively closed set, and M be a module. Then

AssW−1R(W−1M) = {W−1p | p ∈ AssR(M), p ∩W = ∅}.

COROLLARY: Let R be a Noetherian ring, and I be an ideal. Then Min(I) ⊆ AssR(R/I).
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6.26. Associated primes: Lecture Notes §6.2, §3.3.

Key topics:
• Prime filtrations
• Finiteness of associated primes
• Prime avoidance

LEMMA: Let R be a ring, and N ⊆M be modules. Then

AssR(N) ⊆ AssR(M) ⊆ AssR(N) ∪ AssR(M/N).

EXISTENCE OF PRIME FILTRATIONS: Let R be a Noetherian ring and M be a finitely generated module.
Then there exists a finite chain of submodules

M = Mt %Mt−1 % · · · %M1 %M0 = 0

such that for each i = 1, . . . , t, there is some pi ∈ Spec(R) such that Mi/Mi−1
∼= R/pi. Such a chain of

submodules is called a prime filtration of M .

COROLLARY 1: Let R be a Noetherian ring and M be a finitely generated module. Then for any prime
filtration of M , AssR(M) is a subset of the prime factors that occur in the filtration. In particular, AssR(M)
is finite.

PRIME AVOIDANCE: Let R be a ring, J an ideal, and I1, I2, I3, . . . , It a finite collection of ideals with Ii
prime for i > 2 (that is, at most two Ii are not prime). If J 6⊆ Ii for all i, then J 6⊆

⋃
i Ii.

COROLLARY 2: LetR be a Noetherian ring,M a finitely generated module, and I an ideal. If every element
of I is a zerodivisor on M , then there is some nonzero m ∈M such that Im = 0.
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6.27. Primary decomposition: Lecture Notes §6.3.

Key topics:
• Primary ideals
• Primary ideals vs prime ideals
• Irreducible ideals vs prime ideals
• Primary decompositions
• Existence of primary decompositions

DEFINITION: A proper ideal I is primary if rs ∈ I implies r ∈
√
I or s ∈ I . We say that I is p-primary

if it is primary and
√
I = p.

LEMMA: Let R be a Noetherian ring and I an ideal. The following are equivalent:
(i) I is primary;

(ii) Every zerodivisor on R/I is nilpotent;
(iii) AssR(R/I) is a singleton.

DEFINITION: A primary decomposition of an ideal I is an expression of the form

I = Q1 ∩ · · · ∩Qn

where each Qi is a primary ideal.

DEFINITION: A proper ideal I is irreducible if I = J1∩J2 for some ideals J1, J2 implies I = J1 or I = J2.

THEOREM (EXISTENCE OF PRIMARY DECOMPOSITION): Let R be a Noetherian ring.
(1) Every irreducible ideal I is primary.
(2) Every ideal can be written as a finite intersection of irreducible ideals.

Hence, every ideal can be written as a finite intersection of primary ideals.
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6.28. Primary decomposition and uniqueness: Lecture Notes §6.3.

Key topics:
• Minimal primary decompositions
• Uniqueness theorems for primary decomposition
• Primary decomposition and associated primes
• Minimal components in primary decompositions

DEFINITION: A minimal primary decomposition of an ideal I is a primary decomposition

I = Q1 ∩ · · · ∩Qn

such that Qi 6⊇
⋂
j 6=iQj , and

√
Qi 6=

√
Qj for i 6= j.

THEOREM (FIRST UNIQUENESS THEOREM FOR PRIMARY DECOMPOSITION): LetR be a Noetherian ring
and I an ideal. Let

I = Q1 ∩ · · · ∩Qn

be a minimal primary decomposition of I . Then

{
√
Q1, . . . ,

√
Qn} = AssR(R/I).

In particular, the set of primes occurring as the radicals of the primary components are uniquely determined.

THEOREM (SECOND UNIQUENESS THEOREM FOR PRIMARY DECOMPOSITION): Let R be a Noetherian
ring and I an ideal. Let

I = Q1 ∩ · · · ∩Qn

be a minimal primary decomposition of I . Suppose that p =
√
Qi is a minimal prime of I . Then

Qi = IRp ∩R. In particular, the primary components corresponding to the minimal primes are uniquely
determined.

LEMMA: Let I1, . . . , It be ideals. Then
(1) for any multiplicatively closed set W , W−1(I1 ∩ · · · ∩ It) = W−1I1 ∩ · · · ∩W−1It.
(2) AssR

(
R/
⋂t
i=1 Ii

)
⊆
⋃t
i=1 AssR(R/Ii).
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7. DIMENSION AND AFFINE ALGEBRAS

7.29. Dimension: Lecture Notes §7.1.

• Definitions of dimension and height

DEFINITION: Let R be a ring.
• A chain of primes of length n is

p0 $ p1 $ · · · $ pn with pi ∈ Spec(R).

We may say this chain is from p0 and/or to pn to indicate the minimal and/or maximal elements.
• A chain of primes as above is saturated if for each i, there is no prime q such that pi $ q $ pi+1.
• The dimension of R is

dim(R) := sup{n ≥ 0 | there is a chain of primes of length n in Spec(R)}.
• The height of a prime ideal p ∈ Spec(R) is

height(p) := sup{n ≥ 0 | there is a chain of primes to p of length n in Spec(R)}.
• The height of an arbitrary proper ideal I ⊆ R is

height(I) := inf{height(p) | p ∈ Min(I)}.
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7.30. Cohen-Seidenberg Theorems—Applications to dimension: Lecture Notes §7.2.

• Understanding the Cohen-Seidenberg Theorems
• Applying the Cohen-Seidenberg Theorems to behavior of dimension and height for integral

extnesions

Our main goal today is to understand the theorems below, and to apply them to the corollary.

LYING OVER: LetR ⊆ S be an integral inclusion. Then the induced map Spec(S)→ Spec(R) is surjective.
That is, for any prime p ∈ Spec(R), there is a prime q ∈ Spec(S) such that q ∩ R = p; i.e., a prime lying
over p.

INCOMPARABILITY: Let R → S be integral (but not necessarily injective). Then for any q1, q2 ∈ Spec(S)
such23 that q1 ∩ R = q2 ∩ R, we have q1 6* q2. That is, any two primes lying over the same prime are
incomparable.

GOING UP: Let R → S be integral (but not necessarily injective). Then for any p $ P in Spec(R) and
q ∈ Spec(S) such that q ∩R = p, there is some Q ∈ Spec(S) such that q ⊆ Q and Q ∩R = P.

GOING DOWN: Let R ⊆ S be an integral inclusion of domains, and assume that R is normal. Then for any
p $ P in Spec(R) and Q ∈ Spec(S) such that Q ∩ R = P, there is some q ∈ Spec(S) such that q ⊆ Q
and q ∩R = p.

COROLLARY: Let R→ S be integral.
(1) If S is Noetherian, then for any p ∈ Spec(R), the set of primes in S that contract to p is finite.
(2) If R ⊆ S is an inclusion, and S is Noetherian, then for any p ∈ Spec(R), the set of primes in S that

contract to p is nonempty and finite.
(3) For any q ∈ Spec(S), we have height(q) ≤ height(q ∩R).
(4) dim(S) ≤ dim(R).
(5) If R ⊆ S is an inclusion, then dim(R) = dim(S).
(6) If R ⊆ S is an inclusion, R is a normal domain, and S is a domain, then for any q ∈ Spec(S), we

have height(q) = height(q ∩R).

23Reminder: by abuse of notation, even when φ : R→ S is not injective, we write q ∩R for φ−1(q) ⊆ R.
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7.31. Cohen-Seidenberg Theorems—Proofs: Lecture Notes §7.2.

• Proving the Cohen-Seidenberg Theorems

LYING OVER: LetR ⊆ S be an integral inclusion. Then the induced map Spec(S)→ Spec(R) is surjective.
That is, for any prime p ∈ Spec(R), there is a prime q ∈ Spec(S) such that q ∩ R = p; i.e., a prime lying
over p.

INCOMPARABILITY: Let R → S be integral (but not necessarily injective). Then for any q1, q2 ∈ Spec(S)
such that q1 ∩ R = q2 ∩ R, we have q1 6* q2. That is, any two primes lying over the same prime are
incomparable.

GOING UP: Let R → S be integral (but not necessarily injective). Then for any p $ P in Spec(R) and
q ∈ Spec(S) such that q ∩R = p, there is some Q ∈ Spec(S) such that q ⊆ Q and Q ∩R = P.

GOING DOWN: Let R ⊆ S be an integral inclusion of domains, and assume that R is normal. Then for any
p $ P in Spec(R) and Q ∈ Spec(S) such that Q ∩ R = P, there is some q ∈ Spec(S) such that q ⊆ Q
and q ∩R = p.

LEMMA: Let R ⊆ S be an integral inclusion and I an ideal of R. Then any element of s ∈ IS satisfies a
monic equation over R of the form24

sn + a1s
n−1 + · · ·+ an = 0 with ai ∈ I for all i.
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7.32. Noether Normalization and Dimension: Lecture Notes §7.3.

• Relating dimension to Noether normalization
• Structure of Spectrum of finitely generated K-algebras

THEOREM: Let K be a field, and R be a domain that is algebra-finite over K. Let K[f1, . . . , fn] be a
Noether normalization of R. Any saturated chain of primes from 0 to a maximal ideal m of R has length n.

COROLLARY: Let K be a field, and R be a finitely generated K-algebra. Then
(1) For any primes p ⊆ q of R, every saturated chain of primes from p to q has the same length. (That

is, R is catenary).
(2) If R is a domain, and I is an arbitrary ideal, then dim(R) = dim(R/I) + height(I).
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7.33. Transcendence Degree and Dimension: Lecture Notes §7.3.

• Definition of transcendence degree
• Basic properties of transcendence degree
• Relationship between transcendence degree and dimension

DEFINITION: Let K ⊆ L be an extension of fields and let S be a subset of L.
(1) The subfield of L generated by K and S, denoted K(S), is the smallest subfield of L containing

K and S. Equivalently, K(S) is the set of elements in L that can be written as rational function
expressions in S with coefficients in K.

(2) We say that S is algebraically independent over K if Equivalently, S is algebraically independent
over K if, for a set of indeterminates X = {Xs | s ∈ S}, there is an isomorphism of field extensions
of K between the field of rational functions K(S) and K(X) via s 7→ Xs.

(3) We say that S is a transcendence basis for L over K if S is algebraically independent over K and
the field extension K(S) ⊆ L is algebraic.

LEMMA: Let K ⊆ L be an extension of fields.
(1) Every K-algebraically independent subset of L is contained in a transcendence basis. In particular,

there exists a transcendence basis for L over K.
(2) Every transcendence basis for L over K has the same cardinality.

DEFINITION: Let K ⊆ L be an extension of fields. The transcendence degree of L over K is the cardi-
nality of a transcendence basis for L over K.

THEOREM: Let K be a field, and R be a domain that is algebra-finite over K. Then, the dimension of R is
equal to the transcendence degree of Frac(R) over K.
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8. LOCAL THEORY OF DIMENSION

8.34. Length and simple modules.

• Definition of length and simple modules
• Jordan-Holder Theorem
• Relationship between length and support

DEFINITION: Let R be a ring and M a R-module.
(1) M is simple if it is nonzero and M has no nontrivial proper submodules.
(2) A composition series for M of length n is a chain of submodules

M = Mn %Mn−1 % · · · %M1 %M0 = 0

with Mi/Mi−1 simple for all i = 1, . . . , n. The
(3) M has finite length if it admits a composition series. The length of M , denoted `R(M) is the

minimal length n of a composition series for M .

JORDAN-HÖLDER THEOREM: Let R be a ring, and M a module of finite length. Let N ⊆ M be a
submodule.

(1) Any descending chain of submodules of M can be refined25 to a composition series for M .
(2) Every composition series for M has the same length.
(3) If N ⊆M is any submodule, then

(a) N and M/N have finite length, and `R(N), `R(M/N) ≤ `R(M),
(b) `R(N), `R(M/N) < `R(M) unless M = N or N = 0 respectively, and
(c) `R(N) + `R(M/N) = `R(M).

COROLLARY: If M has finite length, then M is Noetherian and any descending chain of submodules of M
stabilizes.

LEMMA: Let R be a ring. A module M is simple if and only if M ∼= R/m for some maximal ideal m.

PROPOSITION: Let R be a Noetherian ring, and M be a module. The following are equivalent:
(1) M has finite length,
(2) M is finitely generated and SuppR(M) ⊆ Max(R),
(3) M is finitely generated and AssR(M) ⊆ Max(R).

25That is, terms can be inserted in between others in the chain to get a composition series.
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