Proposition 1.2 (Arithmetic and order properties of \mathbb{Q}). The set of rational numbers form an "ordered field". This means that the following ten properties hold:

(1) There are operations + and \cdot defined on \mathbb{Q} :

for all $p, q \in \mathbb{Q}$, $p + q \in \mathbb{Q}$ and $p \cdot q \in \mathbb{Q}$.

(2) Each of + and \cdot is a commutative operation:

for all $p, q \in \mathbb{Q}$, p+q = q+p and $p \cdot q = q \cdot p$.

(3) Each of + and \cdot is an associative operation:

for all $p, q, r \in \mathbb{Q}$, (p+q) + r = p + (q+r) and $(p \cdot q) \cdot r = p \cdot (q \cdot r)$.

(4) The number 0 is an identity element for addition and the number 1 is an identity element for multiplication:

for all $p \in \mathbb{Q}$, 0 + p = p and $1 \cdot p = p$.

(5) The distributive law holds:

for all
$$p, q, r \in \mathbb{Q}$$
, $p \cdot (q+r) = p \cdot q + p \cdot r$.

(6) Every number has an additive inverse:

for each $p \in \mathbb{Q}$, there is some "-p" $\in \mathbb{Q}$ such that p + (-p) = 0.

(7) Every nonzero number has a multiplicative inverse:

for each $p \in \mathbb{Q}$ such that $p \neq 0$, there is some " p^{-1} " $\in \mathbb{Q}$ such that $p \cdot p^{-1} = 1$.

- (8) There is a "total ordering" \leq on \mathbb{Q} . This means that
 - (a) for all $p, q \in \mathbb{Q}$, either $p \leq q$ or $q \leq p$.
 - (b) for all $p, q \in \mathbb{Q}$, if $p \leq q$ and $q \leq p$, then p = q.
 - (c) for all $p, q, r \in \mathbb{Q}$, if $p \leq q$ and $q \leq r$, then $p \leq r$.
- (9) The total ordering \leq is compatible with addition:

for all $p, q, r \in \mathbb{Q}$, if $p \leq q$ then $p + r \leq q + r$.

(10) The total ordering \leq is compatible with multiplication by nonnegative numbers:

for all $p, q, r \in \mathbb{Q}$, if $p \leq q$ and $r \geq 0$ then $pr \leq qr$.

2

Axioms of \mathbb{R} . By axiom, the collection of real numbers, \mathbb{R} , is a *complete ordered field*. This means the following ten properties hold:

(Axiom 1) There are operations + and \cdot defined on \mathbb{R} :

for all $p, q \in \mathbb{R}$, $p + q \in \mathbb{R}$ and $p \cdot q \in \mathbb{R}$.

(Axiom 2) Each of + and \cdot is a commutative operation:

for all $p, q \in \mathbb{R}$, p+q = q+p and $p \cdot q = q \cdot p$.

(Axiom 3) Each of + and \cdot is an associative operation:

for all $p, q, r \in \mathbb{R}$, (p+q) + r = p + (q+r) and $(p \cdot q) \cdot r = p \cdot (q \cdot r)$.

(Axiom 4) The number 0 is an identity element for addition and the number 1 is an identity element for multiplication:

for all $p \in \mathbb{R}$, 0 + p = p and $1 \cdot p = p$.

(Axiom 5) The distributive law holds:

for all
$$p, q, r \in \mathbb{R}$$
, $p \cdot (q+r) = p \cdot q + p \cdot r$.

(Axiom 6) Every number has an additive inverse:

for each $p \in \mathbb{R}$, there is some "-p" $\in \mathbb{R}$ such that p + (-p) = 0.

(Axiom 7) Every nonzero number has a multiplicative inverse:

for each $p \in \mathbb{R}$ such that $p \neq 0$ there is some " p^{-1} " $\in \mathbb{R}$ such that $p \cdot p^{-1} = 1$.

(Axiom 8) There is a "total ordering" \leq on \mathbb{R} . This means that

(a) for all $p, q \in \mathbb{R}$, either $p \leq q$ or $q \leq p$.

- (b) for all $p, q \in \mathbb{R}$, if $p \leq q$ and $q \leq p$, then p = q.
- (c) for all $p, q, r \in \mathbb{R}$, if $p \le q$ and $q \le r$, then $p \le r$.

(Axiom 9) The total ordering \leq is compatible with addition:

for all $p, q, r \in \mathbb{R}$, if $p \leq q$ then $p + r \leq q + r$.

(Axiom 10) The total ordering \leq is compatible with multiplication by nonnegative numbers:

for all $p, q, r \in \mathbb{R}$, if $p \leq q$ and $r \geq 0$ then $pr \leq qr$.

(Axiom 11) The COMPLETENESS AXIOM