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1. Monday, August 26, 2024 §1.1

What is a number? Certainly the things used to count sheep, money, etc. are
numbers: 1, 2, 3, . . . . We will call these the natural numbers and write N for the set of
all natural numbers

N = {1, 2, 3, 4, . . . }.
Since we like to keep track of debts too, we’ll allow negatives and 0, which gives us the
integers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . . }.
(The symbol Z is used since the German word for number is zahlen.)

Fractions should count as numbers also, so that we can talk about eating one and
two-thirds of a pizza last night. We define a rational number to be a number expressible
as a quotient of two integers: m

n
for m,n ∈ Z with n 6= 0. For example

5

3
,
2

7
,
2019

2020

are rational numbers. Of course, we often talk about numbers such as “two and a
fourth”, but that the same as 9

4
. Every integer is a rational number just by taking 1

for the denominator; for example, 7 = 7
1
. The set of all rational numbers is written as

Q (for “quotient”).
You might not havethought about it before, but an expression of the form m

n
is really

an “equivalence class”: the two numbers m
n

and a
b

are deemed equal if mb = na. For

example 6
9

= 2
3

because 6 · 3 = 9 · 2.
We’ll talk more about decimals later on, but recall for now that a decimal that ter-

minates is just another way of representing a rational number. For example, 1.9881
is equal to 19881

10000
. Less obvious is the fact that a decimal that repeats also repre-

sents a rational number: For example, 1.333 . . . is rational (it’s equal to 4
3
) and so is

23.91278278278 . . . . We’ll see why this is true later in the semester.
Are these all the numbers there are? Maybe no one in this class would answer “yes”,

but the ancient Greeks believed for a time that every number was rational. Let’s
convince ourselves, as the Greeks did eventually, that there must be numbers that are
not rational. Imagine a square of side length 1. By the Pythagorean Theorem, the
length of its diagonal, call this number c, must satisfy

c2 = 12 + 12 = 2.

That is, there must be a some number whose square is 2 since certainly the length of
the diagonal in such a square is representable as a number. Right? Now, let’s convince
ourselves that there is no rational number with this property. In fact, I’ll make this a
theorem.

Theorem 1.1. There is no rational number whose square is 2.

Preproof Discussion 1. Before launching a formal proof, let’s philosophize about how
one shows something does not exist. To show something does not exist, one proves that
its existence is not possible. For example, I know that there must not be large clump of
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plutonium sewn into the mattress of my bed. I know this since, if such a clump existed,
I’d be dead by now, and yet here I am, alive and well!

More generally and formally, one way to prove the falsity of a statement P is to argue
that if we assume P to be true then we can deduce from that assumption something that
is known to be false. If you can do this, then you have proven P is false. In symbols:
If one can prove

P =⇒ Contradiction

then the statement P must in fact be false.
In the case at hand, letting P be the statement “there is a rational number whose

square is 2”, the Theorem is asserting that P is false. We will prove this by assuming
P is true and deriving an impossibility.

This is known as a proof by contradiction.

Proof. By way of contradiction, assume there were a rational number q such that
q2 = 2. By definition of “rational number”, we know that q can be written as m

n
for

some integers m and n such that n 6= 0. Moreover, we may assume that we have written
q is reduced form so that m and n have no prime factors in common. In particular, we
may assume that not both of m and n are even. (If they were both even, then we could

simplify the fraction by factoring out common factors of 2’s.) Since q2 = 2, m2

n2 = 2
and hence m2 = 2n2. In particular, this shows m2 is even and, since the square of an
odd number is odd, it must be that m itself is even. So, m = 2a for some integer a.
But then (2a)2 = 2n2 and hence 4a2 = 2n2 whence 2a2 = n2. For the same reason as
before, this implies that n must be even. But this contradicts the fact that m and n
are not both even.

We have reached a contradiction, and so the assumption that there is a rational
number q such that q2 = 2 must be false. �

Thus, if we would like to have a number corresponding to the length of the diagonal
of a square with side length one, it must be a number that is real but not rational.
Let’s record the common name for such a number.

Definition 1.2. A real number is irrational if it is not rational.

A version of the previous proof was known even to the ancient Greeks.
Our first major mathematical goal in the class is to make a formal definition of the

real numbers. Before we do this, let’s record some basic properties of the rational
numbers. I’ll state this as a Proposition (which is something like a minor version of a
Theorem), but we won’t prove them; instead, we’ll take it for granted to be true based
on our own past experience with numbers.

For the rational numbers, we can do arithmetic (+,−,×,÷) and we also have a
notion of size (<,>). The first seven observations below describe the arithmetic, and
the last three describe the notion of size.

Proposition 1.3 (Arithmetic and order properties of Q). The set of rational numbers
form an “ordered field”. This means that the following ten properties hold:

(1) There are operations + and · defined on Q, so that if p, q are in Q, then so are
p+ q and p · q.
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(2) Each of + and · is a commutative operation (i.e., p+ q = q+ p and p · q = q · p
hold for all rational numbers p and q).

(3) Each of + and · is an associative operation (i.e., (p+ q) + r = p+ (q + r) and
(p · q) · r = p · (q · r) hold for all rational numbers p, q, and r).

(4) The number 0 is an identity element for addition and the number 1 is an identity
element for multiplication. This means that 0+q = q and 1 ·q = q for all q ∈ Q.

(5) The distributive law holds: p · (q + r) = p · q + p · r for all p, q, r ∈ Q.
(6) Every number has an additive inverse: For any p ∈ Q, there is a number −p

satisfying p+ (−p) = 0.
(7) Every nonzero number has a multiplicative inverse: For any p ∈ Q such that

p 6= 0, there is a number p−1 satisfying p · p−1 = 1.
(8) There is a “total ordering” ≤ on Q. This means that

(a) For all p, q ∈ Q, either p ≤ q or q ≤ p.
(b) If p ≤ q and q ≤ p, then p = q.
(c) For all p, q, r ∈ Q, if p ≤ q and q ≤ r, then p ≤ r.

(9) The total ordering ≤ is compatible with addition: If p ≤ q then p+ r ≤ q + r.
(10) The total ordering ≤ is compatible with multiplication by non-negative numbers:

If p ≤ q and r ≥ 0 then pr ≤ qr.

Which of the properties from Proposition 1.3 does N satisfy?
The commutativity, associativity, distributive law, multiplicative identity, and all of

the ordering properties are true for N.
We expect everything from Proposition 1.3 to be true for the real numbers. We will

build them into our definition. To define the real numbers R, we take the ten properties
listed in the Proposition to be axioms. It turns out the set of real numbers satisfies
one key additional property, called the completeness axiom, which I cannot state yet.

Axioms. The set of all real numbers, written R, satisfies the following eleven proper-
ties:

(Axiom 1) There are operations + and · defined on R, so that if x, y ∈ R, then so are x+y
and x · y.

(Axiom 2) Each of + and · is a commutative operation.
(Axiom 3) Each of + and · is an associative operation.
(Axiom 4) The real number 0 is an identity element for addition and the real number 1 is

an identity element for multiplication. This means that 0 + x = x and 1 · x = x
for all x ∈ R.

(Axiom 5) The distributive law holds: x · (y + z) = x · y + x · z for all x, y, z ∈ R.
(Axiom 6) Every real number has an additive inverse: For any x ∈ R, there is a number

−x satisfying x+ (−x) = 0.
(Axiom 7) Every nonzero real number has a multiplicative inverse: For any x ∈ R such

that x 6= 0, there is a real number x−1 satisfying x−1 · x = 1.
(Axiom 8) There is a “total ordering” ≤ on R. This means that

(a) For all x, y ∈ R, either x ≤ y or y ≤ x.
(b) If x ≤ y and y ≤ z, then x ≤ z.
(c) For all x, y, z ∈ R, if x ≤ y and y ≤ z, then x ≤ z.
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(Axiom 9) The total ordering ≤ is compatible with addition: If x ≤ y then x + z ≤ y + z
for all z.

(Axiom 10) The total ordering ≤ is compatible with multiplication by nonnegative real num-
bers: If x ≤ y and z ≥ 0 then zx ≤ zy.

(Axiom 11) The completeness axiom holds. (I will say what this means later.)

There are many other familiar properties that are consequences of this list of axioms.
As an example we can deduce the following property:

“Cancellation of Addition”: For real numbers, x, y, z ∈ R, if x+y = z+y
then x = z.

Let’s prove this carefully, using just the list of axioms: Assume that x + y = z + y.
Then we can add −y (which exists by Axiom 6) to both sides to get (x+ y) + (−y) =
(z + y) + (−y). This can be rewritten as x + (y + (−y)) = z + (y + (−y)) (Axiom 3)
and hence as x+ 0 = z + 0 (Axiom 6), which gives x = z (Axiom 4 and Axiom 2).

Here is the incredible fact: everything that we know about the real numbers follows
from these axioms! In particular, all of the basic facts about arithmetic of real numbers
follow from this, like “the product of two negative numbers is positive,” as well as
everything you encountered in Calculus, like the Mean Value Theorem.
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2. Wednesday, August 27, 2024 §1.4 & 1.5

Making sense of if-then statements.

• The statement “If P then Q” is true whenever Q is true or P is false.
Equivalently, the statement “If P then Q” is false whenever Q is false and
P is true.
• The converse of the statement “If P then Q” is the statement “If Q then
P”.
• The contrapositive of the statement “If P then Q” is the statement “If

not Q then not P”.
• Any if-then statement is equivalent to its contrapositive, but not necessarily

to its converse!

(1) For each of the following statements, write its contrapositive and its converse.
Decide if original/contrapositive/converse true or false for real numbers a, b,
but don’t prove them yet.
(a) If a is irrational, then 1/a is irrational.
(b) If a and b are irrational, then ab is irrational.
(c) If a ≥ 3, then a2 ≥ 9.

(a) Contrapositive: If 1/a is rational, then a is rational. Converse: If 1/a
is irrational, then a is irrational. Original, contrapositive, and converse
all TRUE.

(b) Contrapositive: If ab is rational, then a is rational or b is rational.
Converse: if ab is irrational, then a and b are irrational. Original,
contrapositive, and converse all FALSE.

(c) Contrapositive: If a2 < 9 then a < 3. Converse: a2 ≥ 9 then a ≥ 3.
Original and contrapositive are TRUE but converse is FALSE.

Proving if-then statements.

• The general outline of a direct proof of “If P then Q” goes
(1) Assume P .
(2) Do some stuff.
(3) Conclude Q.

• Often it is easier to prove the contrapositive of an if-then statement than the
original, especially when the conclusion is something negative. We some-
times call this an indirect proof or a proof by contraposition.

(2) Consider the following proof of the claim “For real numbers x, y, z, if x + y =
z + y, then x = z” from the axioms of R. Match the parts of this proof with
the general outline above. Which sentences are assumptions and which are
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assertions? Is it clear just from reading each sentence on its own whether it is
an assumption or an assertion? Is it clear why each assertion is true?

Proof. Suppose that x+ y = z + y. Then adding −y (which exists by
Axiom 6) we get

(x+ y) + (−y) = (z + y) + (−y).

This can be rewritten (by Axiom 3) as

x+ (y + (−y)) = z + (y + (−y)),

and hence (by Axiom 6) as

x+ 0 = z + 0,

which gives x = z (by Axioms 4 and 2). �

The first sentence is an assumption, while the others are assertions. It
is clear that the first is an assumption since it says “Suppose”; another
possibility is “Assume”.

(3) Consider the following purported proof of the true fact “If 2x + 5 ≥ 7 then
x ≥ 1.” Is this a good proof? Is it a correct proof?

Proof.
x ≥ 1.

Multiply both sides by two.

2x ≥ 2.

Add five to both sides.

2x+ 5 ≥ 7.

�

No. It is not clear what is an assumption and what is an assertion. From
the order of the sentences, it looks like they are assuming the conclusion
and deducing the hypothesis! This was OK in this example, but they could
have done almost the exact same thing to “prove” the false statement “If
2x2 + 5 ≥ 7 then x ≥ 1.”

Proving if-then statements.

(4) Prove or disprove each of the statements in (1). You might consider a proof by
contraposition for some of these!

(a) TRUE: We proceed by contraposition. Suppose that 1/a is rational, so
1/a = p/q for some integers p/q. Then a = q/p is rational.

(b) FALSE: Consider a =
√

2 and b =
√

2. Both a and b are irrational,
but ab = 2 is rational.
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(c) TRUE: If a ≥ 3 then a2 = a · a ≥ a · 3 ≥ 3 · 3 = 9, where we used that
a ≥ 3 ≥ 0 in the first inequality, and 3 ≥ 0 in the second.

(5) Prove or disprove the converse of each of the statements in (1).

(a) TRUE: We proceed by contraposition. Suppose that a is rational, so
a = p/q for some integers p/q. Then 1/a = q/p is rational.

(b) FALSE: Consider a =
√

2 and b = 1. Then ab =
√

2 is irrational, but
b is rational, so it is not true that a and b are irrational.

(c) FALSE: Consider a = −3; for this choice of a, a 6≥ 3 but a2 = 9 ≥ 9.

Using the axioms of R to prove basic arithmetic facts.

(6) Let x and y be real numbers. Use the axioms of R to prove1 that if x ≥ y then
−x ≤ −y.

Let x ≥ y. Adding (−x) + (−y) to both sides (which exists by Axiom 6),
we obtain −y = x + ((−x) + (−y)) ≥ y + ((−x) + (−y)) = −x (by Axiom
9 and Axiom 5). Conversely, let −x ≤ −y. Adding x+ y to both sides, we
obtain y = (x+y) + (−x) ≤ (x+y) + (−y) = x (by Axiom 9 and Axiom 5).

(7) Let x and y be real numbers. Use the axioms of R to prove that x ≥ y if and
only if −x ≤ −y.

We need to prove both directions. The first direction is the previous
problem. Conversely, let −x ≤ −y. Adding x + y to both sides, we obtain
y = (x+ y) + (−x) ≤ (x+ y) + (−y) = x (by Axiom 9 and Axiom 5).

(8) Let x, y be real numbers. Use the axioms of R and facts we have already proven2

to prove that if x ≤ 0 and y ≤ 0, then xy ≥ 0.

1Hint: You may want to add something to both sides.
2Be careful: are you using any facts that we have not already proven?
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3. Friday, August 29, 2024 §1.4 & 1.5

Making sense of quantifier statements.

• The symbol for “for all” is ∀ and the symbol for “there exists” is ∃.
• The negation of “For all x ∈ S, P” is “There exists x ∈ S such that notP”.
• The negation of “There exists x ∈ S such that P” is “For all x ∈ S, notP”.

A prankster has spraypainted the real number line red and blue, so every real number
is red or blue (but not both)!

(1) Match each informal story (i)–(iv) below with a precise quantifier statement
(A)–(D).

Informal stories:

(i) Every number past some
point is red.

(ii) There are arbitrarily big
red numbers.

(iii) All positive numbers are
red.

(iv) There are positive red
number(s).

Precise statements:

(A) For every y > 0, y is red.
(B) There exists y > 0 such that y is red.
(C) For every x ∈ R, there is some y > x such

that y is red.
(D) There exists x ∈ R such that for every y > x,

y is red.

(i)=(D), (ii)=(C), (iii)=(A), (iv)=(B)

(2) Draw a picture where (A) is false and (B) is true.

Answers may vary

(3) Draw a picture where (C) is true and (D) is false.

Answers may vary

(4) Suppose that (C) is true. Which of the following statements must also be true?
Why?
(a) There is some y > 1000000000 such that y is red.
(b) For every µ ∈ R, there is some θ > µ such that θ is red.
(c) For every x ∈ R, there is some y > 2x such that y is red.

These are ALL TRUE.

The next problem is no longer about a spraypainting of the real number line.
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(5) Rewrite each statement with symbols in place of quantifiers, and write its nega-
tion. Do you think the original statement is true or false (but don’t prove them
yet)?.
(a) There exists x ∈ Q such that x2 = 2.
(b) For all x ∈ R, x2 > 0.
(c) For all x ∈ R such that3 x 6= 0, x2 > 0.
(d) For all x ∈ R, there exists y ∈ R such that x < y.
(e) There exists x ∈ R such that for all y ∈ R, x < y.

(a) ∃x ∈ Q : x2 = 2. NEGATION: For all x ∈ Q, x2 6= 2.
(b) ∀x ∈ R, x2 > 0. NEGATION: There exists x ∈ R such that x2 ≤ 0.
(c) ∀x ∈ R : x 6= 0, x2 > 0. NEGATION: There exists x ∈ R such that

x 6= 0 such that x2 ≤ 0.
(d) ∀x ∈ R,∃y ∈ R : x < y. NEGATION: There exists x ∈ R such that

for all y ∈ R, x ≥ y.
(e) ∃x ∈ R : ∀y ∈ R, x < y. NEGATION: For all x ∈ R there exists y ∈ R

such that x ≥ y.

Proving quantifier statements and using the axioms of R.

• The general outline of a proof of “For all x ∈ S, P” goes
(1) Let x ∈ S be arbitrary.
(2) Do some stuff.
(3) Conclude that P holds for x.

• To prove a there exists statement, you just need to give an example. To
prove “There exists x ∈ S such that P” directly:
(1) Consider2 x =[some specific element of S].
(2) Do some stuff.
(3) Conclude that P holds for x.

Note: explaining how you found your example“x” is not a logically necessary part
of the proof.

(6) Circle the correct answer in each of the blanks below:
• To prove a “for all” statement, you need to give a

GENERAL ARGUMENT / SPECIFIC EXAMPLE.
• To disprove a “for all” statement, you need to give a

GENERAL ARGUMENT / SPECIFIC EXAMPLE.
• To prove a “there exists” statement, you need to give a

GENERAL ARGUMENT / SPECIFIC EXAMPLE.
• To disprove a “there exists” statement, you need to give a

GENERAL ARGUMENT / SPECIFIC EXAMPLE.

3In a statement of the form “For all x ∈ S such that Q, P”, the “such that Q” part is part of the
hypothesis: it is restricting the set S that we are “alling”’ over.
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• If you want to use a “for all” statement that you know is true,
you CAN CHOOSE A SPECIFIC VALUE / MUST USE A MYSTERY VALUE
• If you want to use a “there exists” statement that you know is true,

you CAN CHOOSE A SPECIFIC VALUE / MUST USE A MYSTERY VALUE

• To prove a “for all” statement, you need to give a GENERAL ARGUMENT.
• To disprove a “for all” statement, you need to give a SPECIFIC EXAMPLE.
• To prove a “there exists” statement, you need to give a SPECIFIC EXAM-

PLE.
• To disprove a “there exists” statement, you need to give a GENERAL AR-

GUMENT.

• If you want to use a “for all” statement that you know is true, you CAN
CHOOSE A SPECIFIC VALUE
• If you want to use a “there exists” statement that you know is true, you

MUST USE A MYSTERY VALUE

(7) Prove or disprove each of the statements in (5) using the axioms of R and facts
we have already proven.

(a) FALSE: We showed that there is no rational number whose square is
two.

(b) FALSE: Take x = 0; then x2 = 0 which is not strictly greater than
zero.

(c) TRUE.
(d) TRUE: Let x ∈ R be given. Then y = x+ 1 > x.
(e) FALSE: Suppose that x ∈ R. We claim that there is some y ∈ R such

that y ≤ x; just take x itself!

More practice with quantifier statements. Using the axioms of R and statements
that we’ve already proven (like cancellation of addition, or any problem on the list above
the given one), prove the following:

(8) Prove that there exists some x ∈ R such that 2x+ 5 = 3.

Take x = −1. Then 2x+ 5 = 2(−1) + 5 = 3.

(9) Prove4 that for any real number r, we have r · 0 = 0.

Let r be any real number. We have 0 + 0 = 0 (Axiom 4) and hence
r ·(0+0) = r ·0. But r ·(0+0) = r ·0+r ·0 (Axiom 5) and so r ·0 = r ·0+r ·0.
We can rewrite this as 0 + r · 0 = r · 0 + r · 0 (Axiom 4). Now apply the

4Hint: You might find it useful to write 0 = 0 + 0 and, in a later step, use cancellation of addition.
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Cancellation of Addition property (which we previously deduced from the
axioms) to obtain 0 = r · 0.

(10) Let x be a real number. Use the axioms of R and facts we have already proven
to show that if there exists a real number y such that xy = 1, then x 6= 0.

Let x be a real number. Suppose that there exists a real number y
such that xy = 1. By way of contradiction, suppose that x = 0. Then
1 = xy = 0y = 0, which is a contradiction. Thus, we must have x 6= 0.
Thus, if there exists a real number y such that xy = 1, then x 6= 0.

(11) Prove that5 for all x ∈ R such that x 6= 0, we have x2 6= 0.

5Hint: Use (10).
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4. Wednesday, September 3, 2024 §1.8

I owe you a statement of the very important Completeness Axiom. Before we get
there, I want to recall an axiom of N that we haven’t discussed yet. It pertains to
minimum elements in sets. Let’s be precise and define minimum element.

Definition 4.1. Let S be a set of real numbers. A minimum element of S is a real
number x such that

(1) x ∈ S, and
(2) for all y ∈ S, x ≤ y.

In this case, we write x = min(S).

The definition of maximum is the same except with the opposite inequality.

Axiom 4.2 (Well-ordering axiom). Every nonempty subset of N has a minimum ele-
ment.

Example 4.3. If S is the set of even multiples of 7, then S has 14 as its minimum.

We generally like to say the minimum, rather than a minimum. To justify this, let’s
prove the following.

Proposition 4.4. Let S be a set of real numbers. If S has a minimum, then the
minimum is unique.

Preproof Discussion 2. The proposition has the general form “If a thing with prop-
erty P exists, then it is unique”.

How do we prove a statement such as “If a thing with property P exists, then it is
unique”? We argue that if two things x and y both have property P , then x and y must
be the same thing.

Proof of Proposition 4.4. Let S be a set of real numbers, and let x and y be two minima
of S. Applying part (1) of the definition of minimum to y, we have y ∈ S. Applying
part (2) of the definition of minimum to x and the fact that y ∈ S, we get that x ≤ y.
Switching roles, we get that y ≤ x. Thus x = y.

We conclude that if a minimum exists, it is necessarily unique. �

The previous proposition plus the Well-Ordering Axiom together imply that every
nonempty subset of N has exactly one minimum element. A similar proof shows that
if a maximum exists, it is necessarily unique. Could a set fail to have a maximum or
a minimum? Yes!

Example 4.5. (1) The empty set ∅ has no minimum and no maximum element.
(There is no s ∈ ∅!)

(2) The set of natural numbers N has 1 as a minimum, but has no maximum.
(Suppose there was: if n = max(N) was the maximum, then n < n + 1 ∈ N
gives a contradiction.)

(3) The open interval (0, 1) = {x ∈ R | 0 < x < 1} has no minimum and no
maximum. (Exercise later.)
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Definition 4.6. Let S be any subset of R. A real number b is called an upper bound
of S provided that for every s ∈ S, we have s ≤ b.

Definition 4.7. A subset S of R is called bounded above if there exists at least one
upper bound for S. That is, S is bounded above provided there is a real number b such
that for all s ∈ S we have s ≤ b.

For example, the open interval (0, 1) is bounded above, by for example 50.
The subset N of R is not bounded above — there is no real number that is larger

than every natural number. This fact is surprisingly non-trivial to deduce just using
the axioms; in fact, one needs the Completeness Axiom to show it. But of course our
intuition tells us that it is obviously true.

Let’s give a more interesting example of a subset of R that is bounded above.

Example 4.8. Define S to be those real numbers whose squares are less than 2:

S = {x ∈ R | x2 < 2}.
I claim S is bounded above. In fact, I’ll prove 2 is an upper bound: Suppose x ∈ S. If
x > 2, then x · x > x · 2 and x · 2 > 2 · 2, and hence x2 > 4 > 2. This contradicts the
fact that x ∈ S. So, we must have x ≤ 2.

A nearly identical argument shows that 1.5 is also an upper bound (since 1.52 =
2.25 > 2) and similarly one can show 1.42 is an upper bound. But 1.41 is not an upper
bound. For note that 1.4112 = 1.99091 and so 1.41 ∈ S but 1.411 > 1.41.

Question: What is the smallest (or least) upper bound for this set S? Clearly, it
ought to be

√
2 (i.e., the positive number whose square is equal to exactly 2), but

there’s a catch: how do we know that such real number exists?

Definition 4.9. Suppose S is subset of R that is bounded above. A supremum (also
known as a least upper bound) of S is a number ` such that

(1) ` is an upper bound of S (i.e., s ≤ ` for all s ∈ S) and
(2) if b is any upper bound of S, then ` ≤ b.

In this case we write sup(S) = `.
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5. Friday, September 5, 2024 §1.8

Let S be a set of real numbers.

• A number b is an upper bound for S provided for all x ∈ S we have b ≥ x.
• The set S is bounded above provided there exists at least one upper bound

for S.
• A number m is the maximum of S provided

(1) m ∈ S, and
(2) m is an upper bound of S.

• A number ` is a supremum of S provided
(1) ` is an upper bound of S, and
(2) for any upper bound b for S, we have ` ≤ b.

(1) Write, in simplified form, the negation of the statement “b is an upper bound
for S”.

There exists some x ∈ S such that x > b.

(2) Write, in simplified form, the negation of the statement “S is bounded above”.

For every b ∈ R, there exists x ∈ S such that x > b.

(3) Let S be a set of real numbers and suppose that ` = sup(S).
(a) If x > `, what is the most concrete thing you can say about x and S?
(b) If x < `, what is the most concrete thing6 you can say about x and S?

(a) x /∈ S.
(b) There exists some y ∈ S such that y > x.

(4) Let S = {x ∈ R | x3 + x < 5}. Use the definition of supremum to answer the
following:
(a) Is 1 the supremum of S? Why or why not?
(b) Is 2 the supremum of S? Why or why not?

(a) No. 1 is not an upper bound for S, because 1.53 + 1.5 = 4.875 < 5, so
1.5 is a larger element of S.

(b) No. We claim that 1.75 is an upper bound for S, so 2 is not the smallest
upper bound of S. Indeed, if x ∈ S then x ≤ 1.75; if x > 1.75 then
x3 + x > 1.753 + 1.75 = 7.109375 > 5 so x /∈ S.

(5) Consider the open interval (0, 1) = {x ∈ R | 0 < x < 1}.
6Hint: Use one of the previous problems.
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(a) Prove7 that (0, 1) has no maximum element.
(b) Prove that sup( (0, 1) ) = 1.

(a) To obtain a contradiction, suppose that (0, 1) has a maximum element;
call it z. Since z ∈ (0, 1) so 0 < z < 1. First, we claim that y = z+1

2
∈

(0, 1). Indeed, z > 0 implies y > 0+1
2

= 1
2
> 0, and z < 1 implies

y < 1+1
2

= 1, so y ∈ (0, 1). Now we claim that y is larger than z:

y = z+1
2

> z+z
2

= z. But this contradicts that z is an upper bound
for (0, 1), so z cannot be the maximum. Since assuming the existence
of a maximum element leads to a contradiction, we conclude that no
maximum exists.

(b) We need to show that 1 is an upper bound for (0, 1), and that any other
upper bound b for (0, 1) satisfies b ≥ 1. By definition of the interval
(0, 1), the number 1 is an upper bound. Now suppose that b is an upper
bound for (0, 1). We claim that b ≥ 1. Suppose otherwise that b < 1 to
obtain a contradiction. Consider y = b+1

2
. Then by the same algebraic

argument as the previous part, y ∈ (0, 1) and y > b, so y is not an
upper bound for (0, 1). This contradicts the assumption that b < 1, so
b ≥ 1. Thus, every upper bound of (0, 1) is at least 1. This shows that
1 is the supremum of (0, 1)).

(6) Let S be a set of real numbers, and let T = {2s | s ∈ S}. Prove that if S is
bounded above, then T is bounded above.

Assume that S is bounded above. Then there is some upper bound b for
S, so for every s ∈ S, we have b ≥ s. We claim that 2b is an upper bound
for T . Indeed, if t ∈ T , then we can write t = 2s for some s ∈ S, and s ≤ b
implies t = 2s ≤ 2b. Thus, T is bounded above.

(7) Let S be a set of real numbers. Show that if S has a supremum, then it is
unique.

Suppose both x and y are both suprema of the same subset S of R. Then,
since y is an upper bound of S and x is a supremum of S, by part (2) of
the definition of “supremum” we have y ≥ x. Likewise, since x is an upper
bound of S and y is a supremum of S, we have x ≥ y by definition. Since
x ≤ y and y ≤ x, we conclude x = y.

7Hint: Try a proof by contradiction!
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Can you think of a set with no supremum?
The subset N does not have a supremum since, indeed, it does not have any upper

bounds at all.
Can you think of an example of a set that is bounded above but has no supremum?

There is only one such example and it is rather silly: the empty set is bounded above.
Indeed, every real number is an upper bound for the empty set. So, there is no least
upper bound.

Having explained the meaning of the term “supremum”, I can finally state the all-
important completeness axiom:

Axiom (Completeness Axiom). Every nonempty, bounded-above subset of R has a
supremum.

This is an incredibly powerful fact about the real numbers. To give a sense of what
it does, recall that we showed that there is no rational number whose square is two;
the completeness axiom is what allows us to show that there is a real number whose
square is two.

Proposition 5.1. There is a positive real number whose square is 2.

In class, let’s just discuss the outline of this proof rather than the algebraic details,
so we can see the big picture. You can read the full proof in the lecture notes.

Proof outline.

Step 1: Define S to be the subset S = {x ∈ R | x2 < 2}.
Step 2: Show that S is nonempty and bounded above. Thus, by the Completeness

Axiom, there is a real number ` = sup(S).
Step 3: Show that `2 < 2 leads to a contradiction. (Assuming `2 < 2, we can find a

number s slightly larger than ` that is an element of S, contradicting that ` is
an upper bound of S.)

Step 4: Show that `2 > 2 leads to a contradiction. (Assuming `2 > 2, we can find a
number b slightly smaller than ` that is an upper bound of S, contradicting
that ` is the smallest upper bound of S.)

Step 5: There’s no other possibilty: we must have `2 = 2! �

Here is the proof in full detail.

Proof. Define S to be the subset

S = {x ∈ R | x2 < 2}.
S is nonempty since, for example, 1 ∈ S, and it is bounded above, since, for
example, 2 is an upper bound for S, as we showed earlier. So, by the Completeness
Axiom, S has a least upper bound, and we know it is unique from the proposition
above. Let us call it `. I will prove `2 = 2.

We know one of `2 > 2, `2 < 2 or `2 = 2 must hold. We prove `2 = 2 by showing
that both `2 > 2 and `2 < 2 are impossible.
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We start by observing that 1 ≤ ` ≤ 2. The inequality 1 ≤ ` holds since 1 ∈ S
and ` is an upper bound of S, and the inequality ` ≤ 2 holds since 2 is an upper
bound of S and ` is the least upper bound of S.

Suppose `2 < 2. We show this leads to a contradiction by showing that ` is not
an upper bound of S in this case. We will do this by constructing a number that
is ever so slightly bigger than ` and belongs to S. Let ε = 2− `2. Then 0 < ε ≤ 1
(since `2 < 2 and `2 ≥ 1). We will now show that `+ ε/5 is in S: We have

(`+ ε/5)2 = `2 +
2

5
`ε+

ε2

25
= `2 + ε(

2`

5
+

ε

25
).

Now, using ` ≤ 2 and 0 < ε ≤ 1, we deduce

0 <
2`

5
+

ε

25
≤ 4

5
+

ε

25
< 1.

Putting these equations and inequalities together yields

(`+
ε

5
)2 < `2 + ε = 2.

So, `+ ε
5
∈ S and yet `+ ε

5
> `, contradicting the fact that l is an upper bound of

S. We conclude `2 < 2 is not possible.
Assume now that `2 > 2. Our strategy will be to construct a number ever so

slightly smaller than `, which therefore cannot be an upper bound of S, and use
this to arrive at a contradiction. Let δ = `2 − 2. Then 0 < δ ≤ 2 (since ` ≤ 2 and
hence `2− 2 ≤ 2). Since δ > 0, we have `− δ

5
< `. Since ` is the least upper bound

of S, `− δ
5

must not be an upper bound of S. By definition, this means that there

is r ∈ S such that `− δ
5
< r. Since δ ≤ 2 and ` ≥ 1, it follows that `− δ

5
is positive

and hence so is r. We may thus square both sides of `− δ
5
< r to obtain

(`− δ

5
)2 < r2.

Now

(`− δ

5
)2 = `2 − 2`δ

5
+
δ2

25
= δ + 2− 2`δ

5
+
δ2

25
since `2 = δ + 2. Moreover,

δ + 2− 2`δ

5
+
δ2

25
= 2 + δ(1− 2`

5
+

δ

25
) ≥ 2 + δ(1− 4

5
+

δ

25
)

since ` ≤ 2. We deduce that

δ + 2− 2`δ

5
+
δ2

25
≥ 2 + δ(

1

5
) ≥ 2.

Putting these inequalities together gives r2 > 2, contrary to the fact that r ∈ S.
We conclude that `2 > 2 is also not possible.

Since `2 < 2 and `2 > 2 are impossible, we must have `2 = 2. �
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6. Monday, September 9, 2024 §1.9

Recall the Completeness Axiom:

Completeness Axiom: Every nonempty bounded above set of real numbers has a
supremum.

The collection of rational numbers does not satisfy the completeness axiom and
indeed it is precisely the completeness axiom that differentiates R from Q.

Example 6.1. Within the set Q the subset S = {x ∈ Q | x2 < 2} does not have a
supremum. That is, no matter which rational number you pick that is an upper bound
for S, you may always find an even smaller one that is also an upper bound of S.

It is precisely the completeness axiom that assures us that everything that ought to
be a number (like the length of the diagonal of a square with side length 1) really is
a number. It gives us that there are “no holes” in the real number line — the real
numbers are complete.

The completeness axiom is also at the core of the Intermediate Value Theorem and
many of the other major theorems we will cover in this class.

We also need the completeness axiom to understand the relationship between N, Q,
and R.

Theorem 6.2. If x is any real number, then there exists a natural number n such that
n > x.

This looks really stupid at first. How could it be false? But consider: there are
examples of ordered fields, i.e. situations in which Axioms 1–10 hold, in which this
Theorem is not true! So, its proof must rely on the Completeness Axiom.

Proof. Let x be any real number. By way of contradiction, suppose there is no natural
number n such that n > x. That is, suppose that for all n ∈ N, n ≤ x. Then N is a
bounded above (by x). Since it is also clearly nonempty, by the Completeness Axiom,
N has a supremum, call it `. Consider the number y := ` − 1. Since y < ` and ` is
the supremum of N, y cannot be an upper bound of N. So, there must be some m ∈ N
such that such that ` − 1 < m. But then by adding 1 to both sides of this inequality
we get ` < m+ 1 and, since m+ 1 ∈ N, this contradicts that assumption that ` is the
supremum of N.

We conclude that, given any real number x, there must exist a natural number n
such that n > x. �

Corollary 6.3 (Archimedean Principle). If a ∈ R, a > 0, and b ∈ R, then for some
natural number n we have na > b.

“No matter how small a is and how large b is, if we add a to itself enough times, we
can overtake b.”

Proof. We apply Theorem 6.2 to the real number x = b
a
. It gives that there is a natural

number n such that n > x = b
a
. Since a > 0, upon multiplying both sides by a we get

n · a > b. �
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Theorem 6.4 (Density of the Rational Numbers). Between any two distinct real num-
bers there is a rational number; more precisely, if x, y ∈ R and x < y, then there exists
q ∈ Q such that x < q < y.

Proof. We will prove this by consider two cases: x ≥ 0 and x < 0.
Let us first assume x ≥ 0. We apply the Archimedean Principle using a = y − x

and b = 1. (The Principle applies as a > 0 since y > x.) This gives us that there is a
natural number n ∈ N such that

n · (y − x) > 1

and thus

0 <
1

n
< y − x.

Consider the set S = {p ∈ N | p 1
n
> x}. Since 1

n
> 0, using the Archimedean

principle again, there is at least one natural number p ∈ S. By the Well Ordering
Axiom, there is a smallest natural number m ∈ S.

We claim that m−1
n
≤ x. Indeed, if m > 1, then m − 1 ∈ N r S (because m − 1 is

less than the minimum), so m−1
n
≤ x; if m = 1, then m− 1 = 0, so m−1

n
= 0 ≤ x.

So, we have
m− 1

n
≤ x <

m

n
By adding 1

n
to both sides of m−1

n
≤ x and using that 1

n
< y − x, we get

m

n
≤ x+

1

n
< x+ (y − x) = y

and hence
x <

m

n
< y.

Since m
n

is clearly a rational number, this proves the result in this case (when x > 0).
We now consider the case x < 0. The idea here is to simply “shift” up to the case

we’ve already proven. By Theorem 6.2, we can find a natural number j such that
j > −x and thus 0 < x+ j < y+ j. Using the first case, which we have already proven,
applied to the number x+ j (which is positive), there is a rational number q such that
x+ j < q < y+ j. We deduce that x < q− j < y, and, since q− j is also rational, this
proves the theorem in this case. �
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7. Wednesday, September 11, 2024 §1.9

Definition: Let S be a set of real numbers. A number ` is the supremum of S
provided

• ` is an upper bound of S and
• if b is any upper bound of S, then ` ≤ b.

Theorem 6.3: For every real number r, there is a natural number n such that
n > r.

Corollary 6.4 (Archimedean Principle): For every positive real number a
and every real number b, there is some natural number n such that na > b.

Theorem 6.5 (Density of rational numbers): For any real numbers x, y
with x < y, there is some rational number q such that x < q < y.

(1) Use the Archimedean Principle to show that for any positive number ε > 0,

there is a natural number n such that 0 <
1

n
< ε.

Let ε > 0. We apply the Archimedean Principle with ε > 0 and 1 to
obtain that there is some natural number n such that nε > 1. We claim

that this is the n we seek. Indeed, after rearranging, we find that ε >
1

n
,

and n > 0 implies
1

n
> 0 as well.

(2) Prove that the supremum of the set S =

{
1− 1

n
| n ∈ N

}
is 1.

First, we show that 1 is an upper bound for S. Indeed, and s ∈ S can be
written as 1− 1

n
for some n ∈ N, and since 1

n
> 0, we have 1− 1

n
< 1. Thus

1 is an upper bound.
Now we show that 1 is the smallest upper bound. Suppose that b < 1 is

an upper bound. Let ε = 1−b, which by hypothesis is positive. Then by the
previous problem, there is some n ∈ N such that 1

n
< ε, so 1− 1

n
> 1−ε = b.

Thus, b is not an upper bound. It follows that 1 is the smallest upper bound,
i.e., the supremum of S.

(3) Prove the following:
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Corollary 7.1 (Density of irrational numbers): For any real num-
bers x, y with x < y, there is some irrational number z such that x < z < y.

Let x < y be real numbers. Then we have x−
√

2 < y−
√

2. By density of
rationals, there is some rational number q such that x−

√
2 < q < y −

√
2.

Then x < q +
√

2 < y. Since q is rational and
√

2 is irrational, z = q +
√

2
is irrational, and hence the number we seek.

(4) Let S be a set of real numbers, and suppose that sup(S) = `. Let T = {s+ 7 | s ∈ S}.
Prove that sup(T ) = `+ 7.

First, we show that `+ 7 is an upper bound of T . Let t ∈ T . Then there
is some s ∈ S such that t = s+ 7. Since s ≤ `, we have t = s+ 7 < `+ 7, so
` + 7 is indeed an upper bound. Next, let b be an upper bound for T . We
claim that b−7 is an upper bound for S. Indeed, if s ∈ S, then s+7 ∈ T so
s+ 7 ≤ b, so s ≤ b−7. Then, by definition of supremum, we have b−7 ≥ `,
so b ≥ `+ 7.
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8. Friday, September 13, 2024 §1.7 & 1.9

Definition: For a real number x, the absolute value of x is

|x| :=

{
x if x ≥ 0

−x if x < 0
.

Theorem 8.1 (Triangle Inequality): Let x, y, z be real numbers. Then

|x− z| ≤ |x− y|+ |y − z|.

Theorem 8.2 (Reverse triangle Inequality): Let x, y, z be real numbers.
Then

|x− z| ≥ ||x− y| − |y − z||.

We use often use the Triangle Inequality to show precise versions of “if x is close
to y and y is close to z, then x is close to z.” We use often use the Reverse triangle
Inequality to show precise versions of “if x is far from y and y is close to z, then x
is far from z.”

(1) If x and y are real numbers, what is the geometric meaning of |x− y|?

The distance between x and y on the real number line.

(2) We will often look at conditions like |x−L| < ε, where L and ε are real numbers
and x is a variable. Describe {x ∈ R : |x− L| < ε} in interval notation. Now
draw a picture of this on the real number line, showing the role of L and ε.

(L− ε, L+ ε).

(3) Describe {x ∈ R : |3x+ 7| < 4} explicitly in interval notation.

Since |3x+ 7| = |3||x+ 7
3
| = 3|x+ 7

3
|, we have |3x+ 7| < 4 if and only if

|x + 7
3
| < 4

3
, so our interval goes from −7

3
− 4

3
= −11

3
to −7

3
+ 4

3
= −1. That

is (−11
3
,−1).

(4) Suppose that |x− 2| < 1
5
, |y − 2| < 2

5
.

(a) Show that x > 8
5
.

(b) Show that |x− y| < 3
5
.

(c) Use the reverse triangle inequality to show that |y − 3| > 3
5
.
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(a) Since |x− 2| < 1
5
, we have −(x− 2) ≤ |x− 2| < 1

5
, so x− 2 > −1

5
, and

x > 2− 1
5

= 9
5
> 8

5
.

(b) By the triangle inequality, |x− 2| < 1
5

and |y− 2| < 2
5

implies |x− y| <
1
5

+ 2
5

= 3
5
.

(c) Applying the reverse triangle inequality with y, 2, and 3, we have
|y−3| ≥ ||3−2|−|y−2|| = |1−|y−2||. Since |y−2| < 2

5
, 1−|y−2| > 0,

so |1− |y − 2|| = 1− |y − 2| > 1− 2
5

= 3
5
.

(5) True or false & justify1: There is a rational number x such that |x2 − 2| = 0.

False! This would imply that x2 = 2, and there is no such rational
number.

(6) True or false & justify8: There is a rational number x such that |x2−2| < 1
1000000

.

True! There is a rational number x in the interval (
√

2 − 1
4000000

,
√

2 +
1

4000000
) by density of rational numbers. In particular, x <

√
2 + 1

4000000
< 2

so |x +
√

2| < 2 + 2 = 4. (This is a crude bound, but good enough.) Then
|x2 − 2| = |x−

√
2| · |x+

√
2| < 1

4000000
· 4 = 1

1000000
.

8You can use anything we’ve proven in class, but don’t use things we haven’t, like decimal
expansions.
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9. Monday, September 16, 2024 §2.1

We now turn our attention to the next major topic of this class: sequences of real
numbers. We will spend the next few weeks developing their properties carefully and
rigorously. Sequences form the foundation for much of what we will cover for the rest
of the semester.

Definition 9.1. A sequence is an infinite list of real numbers indexed by N:

a1, a2, a3, . . . .

(Equivalently, a sequence is a function from N to R: the value of the function at n ∈ N
is written as an.)

We will usually write {an}∞n=1 for a sequence.

Example 9.2. To describe sequences, we will typically give a formula for the n-th
term, an, either an explicit one or a recursive one. On rare occasion we’ll just list
enough terms to make the pattern clear. Here are some examples:

(1) {5 + (−1)n 1
n
}∞n=1 is the sequence that starts

4,
11

2
,
14

3
,
21

4
,
24

5
, . . . .

(2) Let {an}∞n=1 be defined by a1 = 1, a2 = 1 and an = an−1 + an−2 for all n ≥ 2.
This gives the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

This is an example of a recursively defined sequence. It is the famed Fibonacci
sequence.

(3) Let {cn}∞n=1 be the sequence whose n-th term is the n-th smallest positive prime
integer:

2, 3, 5, 7, 11, 13, 17, 19, 23, . . . .

Note that here I have not really given an explicit formula for the terms of the
sequence, but it is possible to describe an algorithm that lists every term of the
sequence in order.

You have all probably seen an “intuitive” definition of the limit of a sequence before.
For example, you probably believe that

5 + (−1)n
1

n

converges to 5. Let’s give the rigorous definition.

Definition 9.3. Let {an}∞n=1 be an arbitrary sequence and L a real number. We say
{an}∞n=1 converges to L provided the following condition is met:

For every real number ε > 0, there is a real number N such that
|an − L| < ε for all natural numbers n such that n > N .

This is an extremely important definition for this class. Learn it by heart!
In symbols, the definition is
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A sequence {an}∞n=1 converges to L provided
∀ε > 0,∃N ∈ R : ∀n ∈ N s.t. n > N, |an − L| < ε.

It’s a complicated definition — three quantifiers!
Here is what the definition is saying somewhat loosely: No matter how small a

number ε you pick, so long as it is positive, if you go far enough out in the sequence,
all of the terms from that point on will be within a distance of ε of the limiting value L.

Example 9.4. To say that the sequence {an}∞n=1 where an = 5 + (−1)n 1
n

converges to
5 gives us a different statement for every ε > 0. For example:

• Setting ε = 3, there is a number N such that for every natural number n > N ,
|an − 5| < 3. Namely, we can take N = 0, since for every term an of the
sequence, |an − 5| < 3 holds true.
• Setting ε = 1

3
, there is a number N such that for every natural number n > N ,

|an− 5| < 1
3
. We cannot take N = 0 anymore, since 1 > 0 and |a1− 5| = 1 > 1

3
.

However, we can take N = 3, since for n > 3, |an − 5| = 1
n
< 1

3
.

• Setting ε = 1/1000000, there is a number N such that for every natural number
n > N , |an − 5| < 1/1000000. We need a bigger N ; now N = 1000000 works.

In general, our choice of N may depend on ε, which is OK since our definition is of
the form ∀ε > 0,∃N . . . rather than ∃N : ∀ε > 0 . . . .

Example 9.5. I claim the sequence {an}∞n=1 where an = 5 + (−1)n 1
n

converges to 5.
I’ll give a rigorous proof, along with some commentary and “scratch work” within the
parentheses.

Proof. Let ε > 0 be given.
(Scratch work: Given this ε, our goal is to findN so that if n > N , then |5 + (−1)n 1

n
− 5| < ε.

The latter simplifies to 1
n
< ε, which in turn is equivalent to 1

ε
< n since ε and n are

both positive. So, it seems we’ve found the N that “works”. Back to the formal
proof....)

Let N = 1
ε
. Then 1

N
= ε, since ε is positive.

(Comment: We next show that this is the N that “works” in the definition. Since
this involves proving something about every natural number that is bigger than N , we
start by picking one.)

Pick any n ∈ N such that n > N . Then 1
n
< 1

N
and hence

|an − 5| = |5 + (−1)n
1

n
− 5| = |(−1)n

1

n
| = 1

n
<

1

N
= ε.

This proves that {5 + (−1)n 1
n
}∞n=1 converges to 5. �

Remark 9.6. A direct proof that a certain sequence converges to a certain number
follows the general outline:

• Let ε > 0 be given. (or, if your prefer, “Pick ε > 0.”)
• Let N = [expression in terms of ε from scratch work].
• Let n ∈ N be such that n > N .
• [Argument that |an − L| < ε.]
• Thus {an}∞n=1 converges to L.
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In particular, you usually can’t just sit down and write a proof in one fell swoop:
you will have to preapre for your proof by figuring out what value of N will beat ε.
The work that you use to find N in terms of ε does not belong in the final proof.

Example 9.7. I claim that the sequence{
2n− 1

5n+ 1

}∞
n=1

converges to 2
5
. Again I’ll give a proof with commentary and scratch work in paren-

theses.

Proof. Let ε > 0 be given.
(Scratch work: We need n to be large enough so that∣∣∣∣2n− 1

5n+ 1
− 2

5

∣∣∣∣ < ε.

This simplifies to
∣∣ −7
25n+5

∣∣ < ε and thus to 7
25n+5

< ε, which we can rewritten as
7

25ε
− 1

5
< n.)

Let N = 7
25ε
− 1

5
. We solve this equation for ε: We get 7

25ε
= 5N+1

5
and hence

25ε
7

= 5
5N+1

, which gives finally

ε =
7

25N + 5
.

(Next we show this value of N works....)
Now pick any n ∈ N is such that n > N . Then∣∣∣∣2n− 1

5n+ 1
− 2

5

∣∣∣∣ =

∣∣∣∣10n− 5− 10n− 2

25n+ 5

∣∣∣∣ =
7

25n+ 5
.

Since n > N , 25n+ 5 > 25N + 5 and hence

7

25n+ 5
<

7

25N + 5
= ε.

We have proven that if n ∈ N and n > N , then∣∣∣∣2n− 1

5n+ 1
− 2

5

∣∣∣∣ < ε.

This proves
{

2n−1
5n+1

}∞
n=1

converges to 2
5
. �
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10. Wednesday, September 18, 2024 §2.1

Definition: A sequence {an}∞n=1 converges to a real number L provided for every
real number ε > 0, there is a real number N such that |an − L| < ε for all natural
numbers n such that n > N .

(1) Consider the sequence {an}∞n=1 = {2− 50
n
}∞n=1.

(a) Write out the first seven terms of this sequence: use a calculator to write
the decimal expansions for the numbers.

(b) Can you find a point N such that every term in the sequence after N (that
is, every an for n > N) is within 20 of 2 (that is, |an − 2| < 20)?

(c) Can you find a point N such that every term in the sequence after N (that
is, every an for n > N) is within 10 of 2 (that is, |an − 2| < 10)?

(d) Can you find a point N such that every term in the sequence after N (that
is, every an for n > N) is within 1 of 2 (that is, |an − 2| < 1)?

(e) If ε is a positive number, can you find a point N such that every term in
the sequence after N (that is, every an for n > N) is within ε of 2 (that
is, |an − 2| < ε)?

(f) Write a proof that the sequence {an}∞n=1 = {2− 50
n
}∞n=1 converges to 2.

(a) −48,−23,−14.666,−10.5,−8,−6.333,−5.142
(b) after the second term, this is true, so N = 2 works
(c) after the fourth term, this is true, so N = 4 works
(d) Now we have to do a computation: |an − 2| = 50

n
< 1 is true when

n > 50. So N = 50 works.
(e) |an − 2| = 50

n
< ε is true when n > 50

ε
so N = 50

ε
works.

(f) Let ε > 0. Take N = 50
ε

. Let n > N be a natural number. Then
n > N implies

|an − 2| = 50

n
<

50

N
= ε.

This proves that {an}∞n=1 converges to 1.

(2) Prove that the sequence

{
1√
n

}∞
n=1

converges to 0.

(3) Let {an}∞n=1 be a sequence. Suppose we know that {an}∞n=1 converges to 1.
Prove9 that there is a natural number n ∈ N such that an > 0.

9Hint: If you know that a “for all” statement is true, you can choose any specific value for that
variable and get a more specific true statement.
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Take ε = 1. By definition of converges to 1, there is some N such that
for all n > N , |an − 1| < 1, and in particular an > 0. So, take any natural
number greater than n, and the conclusion follows.

(4) Prove or disprove: The sequence

{
n+ 1

2n

}∞
n=1

converges to 0.

Take ε = 1/2. We claim that there is no N such that for all n > N we
have |an− 0| < 1/2. Indeed, given N , take any n to be any natural number
greater than N . Then an = 1/2 + 1/2n > 1/2, so |an| > 1/2. Thus, there
is no N satisfying the desired property. This means that the sequence does
not converge to 1/2.
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11. Monday, September 23, 2024 §2.1

Definition 11.1. We say that a sequence {an}∞n=1 is convergent if there is a number
L such that {an}∞n=1 converges to L, and divergent otherwise.

Example 11.2. Let’s prove the sequence {(−1)n}∞n=1 is divergent.

Proof. We proceed by contradiction: Suppose the sequence did converge to some num-
ber L. Our strategy will be to derive a contradiction by showing that such an L would
have to satisfy mutually exclusive conditions.

By definition, since the sequence converges to L, we have that for every ε > 0 there
is a number N such that |(−1)n − L| < ε for all natural numbers n such that n > N .
In particular, this statement is true for the particular value ε = 1

2
. That is, there is a

number N such that |(−1)n − L| < 1
2

for all natural numbers n such that n > N . Let
n be any even natural number that is bigger than N . (Certainly one exists: we know
there is an integer bigger than N by Theorem 6.2. Pick one. If it is even, take that to
be n. If it is odd, increase it by one to get an even integer n.) Since (−1)n = 1 for an
even integer n, we get

|1− L| < 1

2

and thus 1
2
< L < 3

2
.

Likewise, let n be an odd natural number bigger than N . Since (−1)n = −1 for an
odd integer n, we get

| − 1− L| < 1

2

and thus −3
2
< L < −1

2
. But it cannot be that both L > 1

2
and L < −1

2
.

We conclude that no such L exists; that is, this sequence is divergent. �

Proposition 11.3. If a sequence converges, then there is a unique number to which it
converges.

Proof. Recall that to show something satisfying certain properties is unique, one as-
sumes there are two such things and argues that they must be equal. So, suppose
{an}∞n=1 is a sequence that converges to L and that also converges to M . We will prove
L = M .

By way of contradiction, suppose L 6= M . Then set ε = |L−M |
3

. Since we are
assuming L 6= M , we have ε > 0. According to the definition of convergence, since
the sequence converges to L, there is a real number N1 such that for n ∈ N such that
n > N1 we have

|an − L| < ε.

Also according to the definition, since the sequence converges to M , there is a real
number N2 such that for n ∈ N and n > N2 we have

|an −M | < ε.

Pick n to be any natural number larger than max{N1, N2} (which exists by Theorem
6.2). For such an n, both |an − L| < ε and |an −M | < ε hold. Using the triangle
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inequality and these two inequalities, we get

|L−M | ≤ |L− an|+ |M − an| < ε+ ε.

But by the choice of ε, we have ε + ε = 2
3
|L −M |. That is, we have deduced that

|L−M | < 2
3
|L−M | which is impossible. We conclude that L = M . �

From now on, given a sequence {an}∞n=1 and a real number L, will we use the short-
hand notation

lim
n→∞

an = L

to mean that the given sequence converges to the given number. For example, we
showed above that

lim
n→∞

2n− 1

5n+ 1
=

2

5
.

But, to be clear, the statement “limn→∞ an = L” signifies nothing more and nothing
less than the statement “{an}∞n=1 converges to L”.

Here is some terminology we will need:

Definition 11.4. Suppose {an}∞n=1 is any sequence.

(1) We say {an}∞n=1 is bounded above if there exists at least one real number M
such that an ≤M for all n ∈ N.

(2) We say {an}∞n=1 is bounded below if there exists at least one real number m
such that an ≥ m for all n ∈ N.

(3) We say {an}∞n=1 is bounded if it is both bounded above and bounded below.

Proposition 11.5. If a sequence {an}∞n=1 converges then it is bounded.

Proof. Suppose the sequence {an}∞n=1 converges to the number L. Applying the def-
inition of “converges to L” using the particular value ε = 1 gives the following fact:
There is a real number N such that if n ∈ N and n > N , then |an−L| < 1. The latter
inequality is equivalent to L− 1 < an < L+ 1 for all n > N .

Let m be any natural number such that m > N , and consider the finite list of
numbers

a1, a2, . . . , am−1, L+ 1.

Let b be the largest element of this list. I claim the sequence is bounded above by b.
For any n ∈ N, if 1 ≤ n ≤ m− 1, then an ≤ b since in this case an is a member of the
above list and b is the largest element of this list. If n ≥ m then since m > N , we have
n > N and hence an < L + 1 from above. We also have L + 1 ≤ b (since L + 1 is in
the list) and thus an < b. This proves an ≤ b for all n as claimed.

Now take p to be the smallest number in the list

a1, a2, . . . , am−1, L− 1.

A similar argument shows that an ≥ p for all n ∈ N. �
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12. Wednesday, September 25, 2024 §2.1

Definition 12.1: Let {an}∞n=1 be a sequence.

(1) We say {an}∞n=1 is increasing if for all n ∈ N we have an ≤ an+1.
(2) We say {an}∞n=1 is decreasing if for all n ∈ N, we have an ≥ an+1.
(3) We say {an}∞n=1 is monotone if it is either decreasing or increasing.
(4) We say {an}∞n=1 is strictly increasing if for all n ∈ N, an < an+1.

(1) For each of the following sequences which of the following adjectives apply:
bounded above, bounded below, bounded, (strictly) increasing, (strictly) de-
creasing, (strictly) monotone?
(a) { 1

n
}∞n=1

(b) The Fibonacci sequence {fn}∞n=1 where f1 = f2 = 1 and fn = fn−1 + fn−2
for n ≥ 3.

(c) {(−1)n}∞n=1

(d) {5 + (−1)n 1
n
}∞n=1.

(a) bounded, strictly decreasing, strictly monotone
(b) bounded below, increasing, monotone
(c) bounded
(d) bounded

(2) Prove or disprove: Every increasing sequence is bounded above.

False: the Fibonacci sequence is a counterexample, since we saw above
that it is increasing but not bounded above.

(3) Prove or disprove: Every increasing sequence is bounded below.

True: it follows from the definition that a1 is a lower bound.

(4) Prove or disprove: Every bounded sequence is convergent.

The sequence {(−1)n}∞n=1 is bounded but divergent, so this is false.

(5) Suppose that {an}∞n=1 is a sequence that is bounded above by 1000 and below

by −1000. Show that the sequence
{an
n

}∞
n=1

converges to 0.

Suggestion: First start the way we always do when showing a sequence con-
verges. Then see if you can use the hypothesis that {an}∞n=1 is bounded in a
useful way.
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Let ε > 0 be arbitrary. Take N = 1000
ε

. Then, since −1000 < an < 1000,

we have |an| < 1000 and
∣∣an
n

∣∣ < 1000
n

for any n ∈ N, so for any natural
number n > N , we have∣∣∣an

n
− 0
∣∣∣ < 1000

n
<

1000

N
= ε.

This shows that
{an
n

}∞
n=1

converges to 0.
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13. Friday, September 27, 2024 §2.2

Example 13.1:

(1) A constant sequence {c}∞n=1 converges to c.
(2) The sequence { 1

n
}∞n=1 converges to 0.

Theorem 13.2 (Limits and Algebra):
Let {an}∞n=1 be a sequence that converges to L, and {bn}∞n=1 be a sequence that
converges to M .

(1) If c is any real number, then {can}∞n=1 converges to cL.
(2) The sequence {an + bn}∞n=1 converges to L+M .
(3) The sequence {anbn}∞n=1 converges to LM .

(4) If L 6= 0 and an 6= 0 for all n ∈ N, then

{
1

an

}∞
n=1

converges to
1

L
.

(5) If M 6= 0 and bn 6= 0 for all n ∈ N, then

{
an
bn

}∞
n=1

converges to
L

M
.

(1) Use Theorem 13.2 and Example 13.1 to show that the sequence {2 + 5/n −
7/n2}∞n=1 converges to 2. Show every step in your argument.

The constant sequence {2}∞n=1 converges to 2 by Ex 10.1 part 1. The
sequence {5/n}∞n=1 = {5 · 1/n}∞n=1 converges to 5 · 0 = 0 by Ex 10.1 part
2 and Thm 10.2 part 1. The sequence {−7/n2}∞n=1 = {−7 · 1/n · 1/n}∞n=1

converges to −7 · 0 · 0 = 0 by Ex 10.1 part 2, Thm 10.2 part 1, and Thm
10.2 part 3. Thus, by Thm 10.2 part 2, the sequence {2 + 5/n − 7/n2}∞n=1

converges to 2 + 0 + 0 = 2 by Thm 10.2 part 2.

(2) Use Theorem 13.2 and Example 13.1 to show that the sequence

{
2n+ 3

3n− 4

}∞
n=1

converges to
2

3
.

(3) Use Theorem 13.2 to show that if {an}∞n=1 converges to L, and {bn}∞n=1 converges
to M , then {an − bn}∞n=1 converges to L−M .

By Thm 10.2 part 1, {−bn}∞n=1 converges to −M . Then by Thm 10.2
part 2, {an − bn}∞n=1 = {an + (−bn)}∞n=1 converges L+ (−M) = L−M .

(4) Prove or disprove the following converse to part (2): If {an + bn}∞n=1 converges
to L+M then {an}∞n=1 converges to L and {bn}∞n=1 converges to M .
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Take {an}∞n=1 = {(−1)n}∞n=1 and {bn}∞n=1 = {(−1)n+1}∞n=1. Then {an +
bn}∞n=1 = {0}∞n=1 converges to 0, but neither {an}∞n=1 nor {bn}∞n=1 converges.

(5) Prove or disprove: If {an}∞n=1 is a convergent sequence and {bn}∞n=1 is a divergent
sequence, then {an + bn}∞n=1 is divergent.

Let {an}∞n=1 be a convergent sequence and {bn}∞n=1 be a divergent se-
quence. By way of contradiction, assume that {an + bn}∞n=1 converges. Say
that {an}∞n=1 converges to L and {an + bn}∞n=1 converges to M . Then since
bn = (an + bn)− an, from the Theorem 13.2 we conclude that {bn}∞n=1 con-
verges to M −L; in particular it is convergent. This is a contradiction. We
conclude that {an + bn}∞n=1 must diverge.

(6) Prove part (1) of Theorem 10.2 in the special case c = 2 by following the
following steps:
• Assume that {an}∞n=1 converges to L.
• We now want to show that {2an}∞n=1 converges to something. You know

what goes next!
• Now we do some scratchwork: we want an N such that for n > N we have
|2an − 2L| < ε. Factor this to get some inequality with an. How can we
use our assumption to get an N that “works”?
• Complete the proof.

Assume that {an}∞n=1 converges to L. Let ε > 0. Since ε/2 is a positive
number, by definition of converges, there is some N such that for all n > N
we have |an − L| < ε/2. Then, for this N and any n > N , we have
|(2an) − 2L| = 2|an − L| < 2ε/2 = ε. This shows that {2an}∞n=1 converges
to 2L.

(7) Prove part (1) of Theorem 10.2.

(8) Prove part (2) of Theorem 10.2.

(9) Prove part (3) of Theorem 10.2.
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14. Monday, September 30, 2024 §2.2

Last time we looked at:

Theorem 13.2 (Limits and algebra). Let {an}∞n=1 be a sequence that converges to L,
and {bn}∞n=1 be a sequence that converges to M .

(1) If c is any real number, then {can}∞n=1 converges to cL.
(2) The sequence {an + bn}∞n=1 converges to L+M .
(3) The sequence {anbn}∞n=1 converges to LM .

(4) If L 6= 0 and an 6= 0 for all n ∈ N, then

{
1

an

}∞
n=1

converges to
1

L
.

(5) If M 6= 0 and bn 6= 0 for all n ∈ N, then

{
an
bn

}∞
n=1

converges to
L

M
.

You will prove part (1) in the homework. Let’s prove part (2), and you can read the
rest in the notes.

Proof of (2): Let {an}∞n=1 be a sequence that converges to L, and {bn}∞n=1 be a sequence
that converges to M . Let ε > 0. Since ε/2 > 0, by definition of converges, there is
some N1 such that for all n > N1 we have |an − L| < ε/2. Likewise, there is some N2

such that for all n > N2 we have |bn −M | < ε/2. Let N = max{N1, N2}. Then for
n > N , we have

|(an + bn)− (L+M)| = |(an − L) + (bn −M)| ≤ |an − L|+ |bn −M | <
ε

2
+
ε

2
= ε.

This shows that {an + bn}∞n=1 converges to L+M . �

First, we prove (3).
Pick ε > 0.
(“Scratch work”: The goal is to make |anbn − LM | small and the trick is to use

that
|anbn − LM | = |an(bn −M) + (an − L)M |

≤ |an(bn −M)|+ |(an − L)M |
= |an||bn −M |+ |an − L||M |.

Our goal will be to take n to be large enough so that each of |an||bn −M | and
|an−L||M | is smaller than ε/2. We can make |an−L| as small as we like and |M |
is just a fixed number. So, we can “take care” of the second term by choosing n
big enough so that |an−L| < ε

2|M | . A irritating technicality here is that |M | could

be 0, and so we will use ε
2|M |+1

instead. The other term |an||bn −M | is harder to

deal with since each factor varies with n. Here we use that convergent sequences
are bounded so that we can find a real number X so that |an| ≤ X for all n. Then
we choose n large enough so that |bn −M | < ε

2X
. Back to the proof.)

Since {an} converges, it is bounded by Proposition 11.5, which gives that there
is a strictly positive real number X so that |an| ≤ X for all n ∈ N. Since {bn}
converges to M and ε

2X
> 0, there is a number N1 so that if n > N1 then |bn−M | <
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ε
2X

. Since {an} converges to L and ε
2|M |+1

> 0, there is a number N2 so that if

n ∈ N and n > N2, then |an − L| < ε
2|M |+1

. Let N = max{N1, N2}. For any n ∈ N
such that n > N , we have

|anbn − LM | = |an(bn −M) + (an − L)M |
≤ |an(bn −M)|+ |(an − L)M |
= |an||bn −M |+ |an − L||M |

< X
ε

2X
+

ε

2|M |+ 1
|M |

< ε.

This proves {an · bn}∞n=1 converges to L ·M .
Now we prove (4).
To prove this claim, pick ε > 0.

(Scratch work: We want to show
∣∣∣ 1
an
− 1

L

∣∣∣ < ε holds for n sufficiently large. We

have ∣∣∣∣ 1

an
− 1

L

∣∣∣∣ =
|L− an|
|an||L|

.

We can make the top of this fraction as small as we like, but the problem is that
the bottom might be very small too since an might get very close to 0. But since
an converges to L and L 6= 0 if we go far enough out, it will be close to L. In

particular, if an is within a distance of |L|
2

of M then |an| will be at least |L|
2

. So for

n sufficiently large we have |an−L||an||L| < 2 |an−L||L|2 . And then for n sufficiently large we

also get |an − L| < |L|2
2ε

. Back to the formal proof. . . )

Since {an} converges to L and |L|
2
> 0, there is an N1 such that for n > N1 we

have |an − L| < |L|
2

and hence |an| > |L|
2

. Again using that {an} converges to M

and that ε|L|2
2

> 0, there is an N2 so that for n > N2 we have |an − L| < ε|L|2
2

. Let
N = max{N1, N2}. If n > N , then we have∣∣∣∣ 1

an
− 1

L

∣∣∣∣ =
|an − L|
|an||L|

<
2

|L|
|an − L|
|L|

= 2
|an − L|
|L|2

since |an| > |L|/2 and hence 1
|an| <

2
|L| . But then

2
|an − L|
|L|2

< 2
ε|L|2
2

|L|2
= ε
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since |an − L| < ε|L|2
2

. Putting these together gives∣∣∣∣ 1

an
− 1

L

∣∣∣∣ < ε

for all n > N . This proves { 1
an
}∞n=1 converges to 1

L
.

Finally, part (5) follows from parts (3) and (4).

The following is another useful technique:

Theorem 14.1 (The “squeeze” principle). Suppose {an}∞n=1, {bn}∞n=1, and {cn}∞n=1 are
three sequences such that {an}∞n=1 and {cn}∞n=1 both converge to L, and an ≤ bn ≤ cn
for all n. Then {bn}∞n=1 also converges to L.

Proof. Assume {an}∞n=1 and {cn}∞n=1 both converge to L and that an ≤ bn ≤ cn for all
n ∈ N. We need to prove {bn}∞n=1 converges to L.

Pick ε > 0. Since {an}∞n=1 converges to L there is a number N1 such that if n ∈ N
and n > N1 then |an − L| < ε and hence L − ε < an < L + ε. Likewise, since
{cn}∞n=1 converges to L there is a number N2 such that if n ∈ N and n > N2 then
L− ε < cn < L+ ε. Let

N = max{N1, N2}.
If n ∈ N and n > N , then n > N1 and hence L − ε < an, and n > N2 and hence
cn < L + ε, and also an ≤ bn ≤ cn. Combining these facts gives that for n ∈ N such
that n > N , we have

L− ε < bn < L+ ε

and hence |bn − L| < ε. This proves {bn}∞n=1 converges to L. �

Example 14.2. We can use the Squeeze Theorem to give a short proof that {5 + (−1)n 1
n
}∞n=1

converges to 5. Note that Theorem 13.2 alone cannot be used in this example. How-
ever, from Theorem 13.2, it follows that {5− 1

n
}∞n=1 and {5 + 1

n
}∞n=1 both converge to

5. Then, since

5− 1

n
≤ 5 + (−1)n

1

n
≤ 5 +

1

n
for all n, our sequence also converges to 5.

When I introduced the Completeness Axiom, I mentioned that, heuristically, it is
what tells us that the real number line doesn’t have any holes. The next result makes
this a bit more precise:

Theorem 14.3. Every increasing, bounded above sequence converges.

Proof. Let {an}∞n=1 be any sequence that is both bounded above and increasing.
(Commentary: In order to prove it converges, we need to find a candidate number L

that it converges to. Since the set of numbers occurring in this sequence is nonempty
and bounded above, this number is provided to us by the Completeness Axiom.)

Let S be the set of those real numbers that occur in this sequence. (This is technically
different that the sequence itself, since sequences are allowed to have repetitions but
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sets are not. Also, sequences have an ordering to them, but sets do not.) The set S is
clearly nonempty, and it is bounded above since we assume the sequence is bounded
above. Therefore, by the Completeness Axiom, S has a supremum L. We will prove
the sequence converges to L.

Pick ε > 0. Then L − ε < L and, since L is the supremum, L − ε is not an upper
bound of S. This means that there is an element of S that is strictly bigger than L−ε.
Every element of S is a member of the sequence, and so we get that there is an N ∈ N
such that aN > L− ε.

(We will next show that this is the N that “works”. Note that, in the general
definition of convergence of a sequence, N can be any real number, but in this proof it
turns out to be a natural number.)

Let n be any natural number such that n > N . Since the sequence is increasing,
aN ≤ an and hence

L− ε < aN ≤ an.

Also, an ≤ L since L is an upper bound for the sequence, and thus we have

L− ε < an ≤ L.

It follows that |an − L| < ε. We have proven the sequence converges to L. �

Theorem 14.4 (Monotone Convergence Theorem). Every bounded monotone sequence
converges.

Proof. If {an}∞n=1 is increasing, then this is the content of Theorem 14.3. If {an}∞n=1 is
decreasing and bounded, consider the sequence {−an}∞n=1. If an ≤ M for all n, then
−an ≥ −M for all n, so {−an}∞n=1 is bounded below. Also, since an ≥ an+1 for all n,
we have −an ≤ −an+1 for all n, so {−an}∞n=1 is increasing. Thus, by Theorem 14.3,
{−an}∞n=1 converges, say to L. Then by Theorem 13.2(1), {an}∞n=1 = {−(−an)}∞n=1

converges to −L. �

Example 14.5. Consider the sequence {an}∞n=1 given by the formula

an = 1 +
1

22
+

1

32
+ · · ·+ 1

n2
.

We will use the Monotone Convergence Theorem to prove that this sequence converges.
First, we need to see that the sequence is increasing. Indeed, for every n we have

that an+1 = an + 1
a2n+1
≥ an.

Next, we need to show that it is bounded above. Observe that

an = 1 +
1

22
+

1

32
+ · · ·+ 1

n2

≤ 1 +
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n

= 1 + (
1

1
− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n− 1
− 1

n
)

= 1 + 1− 1

n
,

so we have an ≤ 2 for all n. This means that {an}∞n=1 is bounded above by 2.
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Hence, by the Monotone Convergence Theorem, {an}∞n=1 converges. Leonhard Euler
was particularly interested in this sequence, and was able to prove that it converges to
π2

6
. This requires some other ideas, so we won’t do that here.
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15. Wednesday, October 2, 2024 §2.2

(1) Which of the following implications about sequences hold in general? Either
mention a relevant theorem or give a counterexample.

(a) monotone =⇒ convergent
(b) convergent =⇒ bounded
(c) bounded + decreasing =⇒ con-

vergent

(d) increasing + convergent =⇒
bounded

(e) convergent =⇒ monotone
(f) bounded =⇒ convergent

(a) False: {n}∞n=1

(b) True: (Every convergent sequence is bounded.)
(c) True: Monotone Convergence Theorem
(d) True: (Every convergent sequence is bounded.)

(e) False: { (−1)
n

n
}∞n=1

(f) False: {(−1)n}∞n=1

(2) Show10 that the sequence

{
n2 − 15

√
n sin(n)

3n2

}∞
n=1

converges and determine to

what number it converges.

(3) Prove or disprove: If a2n < 4 and an < an+1 for all n, then {an}∞n=1 converges.

(4) Prove that for any real number r, there exists a sequence of rational numbers
that converges to r.

Hint: Show that there exists a sequence {an}∞n=1 of rational numbers such
that r − 1

n
< an < r.

(5) Prove that if {an}∞n=1 is a bounded sequence and {bn}∞n=1 converges to 0, then
{anbn}∞n=1 converges to 0.

(6) Prove or disprove: The sequence {an}∞n=1 where an = 1 + 1
23

+ · · · + 1
n3 is

convergent.

(7) Prove or disprove: The sequence {an}∞n=1 where an = 1+ 1
2
+· · ·+ 1

n
is convergent.

10You can use any basic properties about the sine function from trig, like which values of sin(x)
are equal to 0, 1, or −1, and that −1 ≤ sin(x) ≤ 1.
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16. Friday, October 4, 2024 §2.2

Definition 16.1: A sequence diverges to +∞ if for every real number M , there
is some N ∈ R such that for every natural number n > N we have an > M .

Definition 16.2: A sequence diverges to −∞ if for every real number m, there
is some N ∈ R such that for every natural number n > N we have an < m.

(1) Use the definition to prove that the sequence {
√
n}∞n=1 diverges to +∞.

Let M ∈ R. [Scratchwork: We need some N such that if n > N then√
n > M . This inequality is equivalent to n > M2, so take N = M2.] Take

N = M2. Then for any natural number n > N , we have
√
n >
√
M2 ≥M .

This shows that {
√
n}∞n=1 diverges to +∞.

(2) Prove that if a sequence {an}∞n=1 diverges to +∞ then it is not bounded above.

Suppose that {an}∞n=1 diverges to +∞. By way of contradiction, suppose
that {an}∞n=1 is bounded above. This means that there is some b ∈ R such
that for all n ∈ N, we have an ≤ b. Apply the definition of diverges to +∞
with the number M = b. Then there is some N such that for all n > N we
have an > b. But for such an n we have an ≤ b and an > b, a contradiction.
We conclude that {an}∞n=1 is not bounded above.

(3) Use (2) to show that if a sequence diverges to +∞ then it diverges.

Since any convergent sequence is bounded, an unbounded sequence di-
verges. In particular, if {an}∞n=1 diverges to +∞, then it is not bounded
above, and hence divergent.

(4) Prove or disprove: If a sequence diverges, then it diverges to +∞ or it diverges
to −∞.

This is false: the sequence {(−1)n}∞n=1 is divergent, but does not diverge
to +∞ (take M = 1) nor does it diverge to −∞ (take m = −1).

(5) Prove or disprove: If a sequence is not bounded above, then it diverges to +∞.

This is false: the sequence {(−1)n ·n}∞n=1 is not bounded above or below,
but does not diverge to −∞: take M = 0; then for any N there is some odd
natrual number n > N , and for this n, an = −n < 0.

(6) Prove or disprove: If a sequence diverges to +∞ then it is increasing.
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(7) Prove or disprove: If a sequence is increasing and not bounded above, it diverges
to ∞.
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17. Monday, October 7, 2024 §1.5

We will now embark on a bit of detour. I’ve postponed talking about proofs by
induction, but we will need to use that technique on occasion. So let’s talk about that
idea now.

The technique of proof by induction is used to prove that an infinite sequence of
statements indexed by N

P1, P2, P3, . . .

are all true. For example the equation

1 + 2 + · · ·+ n =
n(n+ 1)

2

holds for all n ∈ N. We get one statement for each natural number:

P1 : 1 =
1 · 2

2

P2 : 1 + 2 =
2 · 3

2

P3 : 1 + 2 + 3 =
3 · 4

2
...

...

Such a fact (for all n) is well-suited to be proven by induction.
Here is the general principle:

Theorem 17.1 (Principle of Mathematical Induction). Suppose we are given, for each
n ∈ N, a statment Pn. Assume that P1 is true and that for each k ∈ N, if Pk is true,
then Pk+1 is true. Then Pn is true for all n ∈ N.

“The domino analogy”: Think of the statements P1, P2, . . . as dominoes lined up in
a row. The fact that Pk =⇒ Pk+1 is interpreted as meaning that the dominoes are
arranged well enough so that if one falls, then so does the next one in the line. The fact
that P1 is true is interpreted as meaning the first one has been knocked over. Given
these assumptions, for every n, the n-th domino will (eventually) fall down.

The Principle of Mathematical Induction (PMI) is indeed a theorem, which we will
now prove:

Proof. Assume that P1 is true and that for each k ∈ N, if Pk is true, then Pk+1 is true.
Consider the subset

S = {n ∈ N | Pn is false}
of N. Our goal is to show S is the empty set.

By way of contradiction, suppose S is not empty. Then by the Well-Ordering Princi-
ple, S has a smallest element, call it `. (In other words, P` is the first statement in the
list P1, P2, . . . , that is false.) Since P1 is true, we must have ` > 1. But then `− 1 < `
and so `− 1 is not in S. Since ` > 1, we have `− 1 ∈ N and thus we can say that P`−1
must be true. Since Pk ⇒ Pk+1 for any k, letting k = `− 1, we see that, since P`−1 is
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true, P` must also by true. This contradicts the fact that ` ∈ S. We conclude that S
must be the empty set. �

The above proof shows that the Principle of Mathematical Induction is a consequence
of the Well-Ordering Principle. The converse is also true.

Example 17.2. Let’s prove that the formula

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
for every natural number n. Here, Pk is

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
.

For P1 we have 1 = 1·2
2

is true. Now we show Pk implies Pk+1. Let k be a natural
number and assume that

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
.

Then

1 + 2 + 3 + · · ·+ k + (k + 1) = (1 + 2 + 3 + · · ·+ k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
(k + 1)(k + 2)

2
=

(k + 1)((k + 1) + 1)

2
,

which is Pk+1. Thus we have proven the equality for all natural numbers n by induction.
�

Proposition 17.3. Let x be a real number. For any n ∈ N,

(1− x)(1 + x+ x2 + x3 + · · ·+ xn) = 1− xn+1.

Proof. We proceed by induction on n. First we check for n = 1:

(1− x)(1 + x) = 1 + x− x− x2 = 1− x1+1,

so the statement is true for n = 1. Suppose the equality holds for k:

(1− x)(1 + x+ x2 + x3 + · · ·+ xk) = 1− xk+1.

Then

(1− x)(1 + x+ x2 + x3 + · · ·+ xk+1)

= (1− x)((1 + x+ x2 + x3 + · · ·+ xk) + (xk+1))

= (1− x)(1 + x+ x2 + x3 + · · ·+ xk) + (1− x)(xk+1)

= 1− xk+1 + xk+1 − xk+2 = 1− xk+2,

and it holds for k + 1. Thus, the statement is true for all n by induction. �
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Now, I want to apply what we’ve done so far to decimal expansions. Let us say
that d1, d2, d3, . . . is a “digit sequence” if di ∈ {0, 1, . . . , 9} for each i ∈ N. We will
say that an integer k and a digit sequence d1, d2, d3, . . . is a “decimal expansion” and
write k.d1d2d3 . . . to denote a decimal expansion. We say that the decimal expansion
k.d1d2d3 . . . “corresponds to a real number r” if the sequence

a1 = k +
d1
101

a2 = k +
d1
101

+
d2
102

a3 = k +
d1
101

+
d2
102

+
d3
103

...

converges to r.

Theorem 17.4. Every decimal expansion corresponds to a real number.

Proof. Let k be an integer, and d1, d2, d3, . . . be a sequence such that di ∈ {0, 1, . . . , 9}
for each i ∈ N. We need to show that the sequence

a1 = k +
d1
101

a2 = k +
d1
101

+
d2
102

a3 = k +
d1
101

+
d2
102

+
d3
103

...

converges. Observe that {an}∞n=1 is increasing. Note now that for any n ∈ N, we have

an = k +
d1
101

+
d2
102

+ · · ·+ dn
10n

= k +
9

101
+

9

102
+ · · ·+ 9

10n

= k +
9

10

(
1 +

1

101
+ · · ·+ 1

10n−1

)
= k +

9

10

1− 1
10n

1− 1
10

= k +
9

10

1− 1
10n

9
10

= k + 1− 1

10
≤ k + 1.

Since this holds for all n, {an}∞n=1 is bounded above by k + 1. By the Monotone
Convergence Theorem, {an}∞n=1 converges. �
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19. Friday, October 11, 2024 §2.2, 1.5

(1) Let a ≥ 2 be a real number.
(a) Prove that for any natural number n, the inequality an ≥ na holds true.

We proceed by induction on n. For the base case, we consider n = 1,
where we have

a1 = a = 1 · a
and the inequality holds true. By way of induction, assume that for
some natural number k, the inequality

ak ≥ ka

holds. Then

ak+1 = ak · a ≥ (ka) · a ≥ 2ka ≥ ka+ ka ≥ ka+ a = (k + 1)a

so the claimed inequality holds for n = k + 1. Thus, by induction, the
inequality holds for all n ∈ N.

(b) Prove that the sequence
{

1
an

}∞
n=1

converges to 0.

Since an ≥ na for all n, we have

1

an
≥ 1

an
≥ 0

for all n. The sequence 1
an

= 1
a
1
n

converges to 0, as does the con-
stant sequence 0, so the given sequence converges to 0 by the Squeeze
Theorem.

(2) Define a sequence {bn}∞n=1 recursively by the rule b1 = 0, and bn =
1 + bn−1

2
for

n > 1. Prove that bn = 1− 1

2n−1
for all n ∈ N and compute lim

n→∞
bn.

We prove the first equality by induction. For the base case n = 1, we
have b1 = 0 = 1− 1 = 0. Suppose that the equality holds for n = k, so

bk = 1− 1− 1

2k−1
.

Then, since k + 1 > 1, we have

bk+1 =
1 + bk

2
=

1 + 1− 1
2k−1

2
=

2

2
− 1

2k−1 · 2
= 1− 1

2k
= 1− 1

2(k+1)−1 .

Thus the claimed equality holds for k+ 1. By induction, the equality holds
for all n ∈ N.

Now, we can use the previous problem plus Algebra and Limits to deduce
that the sequence converges to 1.
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(3) Define a sequence {cn}∞n=1 recursively by the rule c1 = 1, and cn =
√

2cn−1 for
n > 1.

(a) Use a calculator to write down the first 5 terms of this sequence.
(b) Prove that the sequence {cn}∞n=1 is bounded above by 2.

Again, we use induction. c1 = 1 < 2. Suppose that ck < 2. Then
ck+1 =

√
2ck <

√
2 · 2 = 2. Thus, by induction, cn < 2 for all n.

(c) Use the previous part to show that {cn}∞n=1 is an increasing sequence.

Since cn < 2, we have c2n+1 = 2cn > c2n, and since cn and cn+1 are both
positive, cn < cn+1.

(d) Prove that the sequence {cn}∞n=1 is convergent.

Because the sequence is monotone and bounded above, it is convergent
by Monotone Convergence Theorem.

(e) What value does {cn}∞n=1 converge to? Can you prove it?

Because the sequence is convergent, we can write the limit as L. Since
cn is a positive increasing bounded above sequence, so is {√cn}∞n=1.
Setting lim

√
cn = M , we have M2 = lim

√
cn
√
cn = lim cn = L, and

since M > 0, we have M =
√
L. Then

L = lim cn = lim cn+1 = lim
√

2cn = lim
√

2
√
cn =

√
2
√
L

so L =
√

2
√
L, and L2 = 2L; since L > 0, we must have L = 2.
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20. Monday, October 14, 2024 §2.3

We next discuss the important concept of a “subsequence”.
Informally speaking, a subsequence of a given sequence is a sequence one forms by

skipping some of the terms of the original sequence. In other words, it is a sequence
formed by taking just some of the terms of the original sequence, but still infinitely
many of them, without repetition.

We’ll cover the formal definition soon, but let’s give a few examples first, based on
this informal definition.

Example 20.1. Consider the sequence

an =

{
7 if n is divisible by 3 and
1
n

if n is not divisible by 3.

If we pick off every third term starting with the term a3 we get the subsequence

a3, a6, a9, . . .

which is the constant sequence

7, 7, 7, . . . .

If we pick off the other terms we form the subsequence

a1, a2, a4, a5, a7, a8, a10, . . .

which gives the sequence

1,
1

2
,
1

4
,
1

5
,
1

7
,
1

9
,

1

10
, . . . .

Note that it is a little tricky to find an explicit formula for this sequence.
On the other hand,

1

2
,
1

2
,
1

2
, · · ·

is not a subsequence, because 1
2

only appears once in the original sequence.

Here is the formal definition:

Definition 20.2. A subsequence of a given sequence {an}∞n=1 is any sequence of the
form

{ank}∞k=1

where

n1, n2, n3, . . .

is any strictly increasing sequence of natural numbers — that is nk ∈ N and nk+1 > nk
for all k ∈ N, so that

n1 < n2 < n3 < · · · .

Note that k is the index of the subsequence; i.e., the first term in the subsequence
is when k = 1, the second is when k = 2 and so on. The integer sequence {nk}∞k=1 is
the sequence of indices of the original sequence we choose to make the subsequence.
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Example 20.3. Let {an}∞n=1 be any sequence.
Setting nk = 2k − 1 for all k ∈ N gives the subsequence of just the odd-indexed

terms of the original sequence.
Setting nk = 2k for all k ∈ N gives the subsequence of just the even-indexed terms

of the original sequence.
Setting nk = 3k − 2 for all k ∈ N gives the subsequence of consising of every third

term of the original sequence, starting with the first.
Setting nk = 100 + k gives the subsequence that is that “tail end” of the original,

obtained by skipping the first 100 terms:

a101, a102, a103, a104, . . . .

Of course, there is nothing special about 100 in this example.

The following result is important:

Theorem 20.4. If a sequence {an}∞n=1 converges to L, then every subsequence of this
sequence also converges to L.

We prepare with a lemma.

Lemma 20.5. Let b1, b2, . . . be any strictly increasing sequence of natural numbers;
that is, assume bk ∈ N for all k ∈ N and that bk < bk+1 for all k ∈ N. Then bk ≥ k for
all k.

Proof. Suppose b1, b2, . . . is a strictly increasing sequence of natural numbers. We prove
bn ≥ n for all n by induction on n. That is, for each n ∈ N, let Pn be the statement
that bn ≥ n.
P1 is true since b1 ∈ N and so b1 ≥ 1. Given k ∈ N, assume Pk is true; that is, assume

bk ≥ k. Since bk+1 > bk and both are natural numbers, we have bk+1 ≥ bk + 1 ≥ k + 1;
that is, Pk+1 is true too. By induction, Pn is true for all n ∈ N. �

Proof of Theorem 20.4. Let the sequence {an}∞n=1 converge to L, and take a subse-
quence {ank}∞k=1 for some strictly increasing sequence n1 < n2 < n3 < · · · of natural
numbers.

Let ε > 0. Since {an}∞n=1 converges to L, there is some N ∈ R such that for all
natural numbers n > N we have |an − L| < ε. We claim that the same N works to
verify the definition of {ank}∞k=1 converges to L for this ε. Indeed, if k > N , then
nk > N , so |ank − L| < ε. Thus, {ank}∞k=1 converges to L. �

(1) True or false; justify.

(a) The sequence

{
1

3n+ 7

}∞
n=1

is a subsequence of the sequence

{
1

n

}∞
n=1

.

(b) The constant sequence

{
1

2

}∞
n=1

is a subsequence of the sequence

{
1

n

}∞
n=1

.

(c) The constant sequences {−1}∞n=1 and {1}∞n=1 are both subsequences of the
sequence {(−1)n}∞n=1.

(d) The constant sequences {−1}∞n=1 and {1}∞n=1 are the only two subsequences
of the sequence {(−1)n}∞n=1.

(e) The sequence {sin(πn)}∞n=1 is a subsequence of {sin(n)}∞n=1.
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(a) True: Take nk = 3k + 7.
(b) False: The term 1/2 occurs only for n = 2, so we can’t choose an

increasing sequence of indices that yield this value.
(c) True: take nk = 2k + 1 and take nk = 2k, respectively.
(d) False: The sequence itself is a subsequence (nk = k) for example.
(e) False: sin(πn) is 1, 0,−1, 0, 1, 0,−1, 0, . . . , but the values of sin(n) are

never 0 or ±1.

(2) Explain how the following Corollary follows from Theorem 20.4.
Corollary 20.6: Let {an}∞n=1 be any sequence.
(a) If there is a subsequence of this sequence that diverges, then the sequence

itself diverges.
(b) If there are two subsequences of this sequence that converge to different

values, then the sequence itself diverges.

These are special cases of the contrapositive.

(3) Use Corollary 20.6 to give a quick proof that the sequence {(−1)n}∞n=1 diverges.

It has subsequences that converge to different values, as we saw above.

(4) Prove or disprove:
(a) Every subsequence of a bounded sequence is bounded.
(b) Every subsequence of a divergent sequence is divergent.
(c) Every subsequence of a sequence that diverges to −∞ also diverges to −∞.

(a) True: if m < an < M for all n and n1 < n2 < n3 < · · · is a strictly
increasing sequence of natural numbers, then m < ank < M for all k.

(b) False: The divergent sequence {(−1)n}∞n=1 has a convergent subse-
quence {1}∞n=1.

(c) True: Let n1 < n2 < n3 < · · · be a strictly increasing sequence of
natural numbers, and {ank}∞k=1 be a subsequence. Let m ∈ R. There is
some N such that an < m for all n > N . We claim that this N works
(for this m) to show that {ank}∞k=1 diverges to −∞. Indeed, if k > N ,
then nk ≥ k > N , so ank < m. Thus {ank}∞k=1 diverges to −∞.
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21. Wednesday, October 16, 2024 §2.3

. . .
...

...
...

...
...

...
...

...
...

...

· · · (−4, 5) (−3, 5) (−2, 5) (−1, 5) (0, 5)
%%
(1, 5)

%%
(2, 5)

%%
(3, 5)

%%
(4, 5) · · ·

· · · (−4, 4)

77

(−3, 4)

77

(−2, 4)

77

(−1, 4)

88

(0, 4)
%%
(1, 4)

%%
(2, 4)

%%
(3, 4)

%%
(4, 4) · · ·

· · · (−4, 3)

77

(−3, 3)

77

(−2, 3)

77

(−1, 3)

88

(0, 3)
%%
(1, 3)

%%
(2, 3)

%%
(3, 3)

%%
(4, 3) · · ·

· · · (−4, 2)

77

(−3, 2)

77

(−2, 2)

77

(−1, 2)

88

(0, 2)
%%
(1, 2)

%%
(2, 2)

%%
(3, 2)

%%
(4, 2) · · ·

· · · (−4, 1)

77

(−3, 1)

77

(−2, 1)

77

(−1, 1)

88

(0, 1)oo (1, 1)kk (2, 1)
ii

(3, 1)
hh

(4, 1) · · ·

This gives the list of points

(0, 1), (−1, 1), (0, 2), (1, 1), (−2, 1), (−1, 2), (0, 3), (1, 2), (2, 1), (−3, 1), . . .

Now convert these to a list of rational numbers by changing (m,n) to m
n

to get the
sequence

0

1
,
−1

1
,
0

2
,
1

1
,
−2

1
,
−1

2
,
0

3
,
1

2
,
2

1
,
−3

1
, . . .

of rational numbers. Call this sequence {wn}∞n=1.

(1) True or false: Every rational number occurs in this sequence. That is, for every
q ∈ Q, there is some n ∈ N such that wn = q.

True: The idea is that writing q = m
n

, the point (m,n) with m ∈ Z and
n ∈ N gets passed through by the zigzag at least once.

(2) True or false: Every rational number occurs in this sequence infinitely many
times. That is, for every q ∈ Q, there are infinitely many natural numbers
n ∈ N such that wn = q.

True: We can write q = m
n

= 2m
2n

= 3m
3n

= · · · , and each point (km, kn)
gets passed through by the zigzag.

(3) True or false: For every rational number q ∈ Q, the constant sequence {q}∞n=1

is a subsequence of {wn}∞n=1.

True: Since q occurs infinitely many times, there is a strictly increasing
sequence of indices nk such that wnk = q.
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(4) True or false: For every real number r ∈ R, the constant sequence {r}∞n=1 is a
subsequence of {wn}∞n=1.

False: Every term in the sequence is rational.

(5) True or false: Every sequence of rational numbers {qn}∞n=1 is a subsequence of
{wn}∞n=1.

True: there is some n1 such that wn1 = q1. Then since q2 occurs infinitely
many times, it must occur with some index larger than n1, so there is some
n2 > n1 with wn2 = q2. Continuing like this, we obtain some {nk} strictly
increasing such that qk = wnk .

(6) True or false: For every real number r ∈ R, there is a subsequence of {wn}∞n=1

that converges to r.

True: For every real number r, there is a sequence of rational numbers
that converges to r, and any such sequence is a subsequence of {wn}.

Theorem 21.1: There is a sequence of rational numbers {wn}∞n=1 such that

(1) every rational number occurs in {wn}∞n=1 infinitely many times;
(2) every sequence of rational numbers is a subsequence of {wn}∞n=1; and
(3) every real number occurs as the limit of some subsequence of {wn}∞n=1.
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Theorem 21.2 (Cantor’s Theorem): There is no sequence of real numbers
such that every real number r occurs in the sequence.

By contradiction, suppose {an}∞n=1 is a sequence such that every real number occurs
as some an and write out the decimal expansions (where each di,j ∈ {0, 1, . . . , 9} is a
digit).

a1 = (integer part).d1,1d1,2d1,3d1,4d1,5d1,6 · · ·
a2 = (integer part).d2,1d2,2d2,3d2,4d2,5d2,6 · · ·
a3 = (integer part).d3,1d3,2d3,3d3,4d3,5d3,6 · · ·
a4 = (integer part).d4,1d4,2d4,3d4,4d4,5d4,6 · · ·
a5 = (integer part).d5,1d5,2d5,3d5,4d5,5d5,6 · · ·
a6 = (integer part).d6,1d6,2d6,3d6,4d6,5d6,6 · · ·
a7 = (integer part).d7,1d7,2d7,3d7,4d7,5d7,6 · · ·

...
...

...
...

Proof. Form a real number x as 0.e1e2e3 · · · where the ei’s are digits chosen as
follows: Let

ei =

{
7 if di,i ≤ 5

3 if di,i > 5.

In particular, ei 6= di,i for every i. This means that the digit sequence e1, e2, e3, . . .
is not equal to any of the other digit sequences di,1, di,2, di,3, . . . for any i, because
the i-th values are different. Moreover, the number x has a unique decimal expan-
sion (since the only time two decimal expansions give the same number is one is
eventually all 0’s and the other is eventually all 9’s), so ai 6= x for all i ∈ N.

Thus x is not a member of this sequence, contrary to what we assumed. �
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22. Friday, October 18, 2024 §2.3

Our next big theorem has a very short statement, but is surprisingly tricky to prove.

Theorem 22.1 (Bolzano-Weierstrass Theorem). Every sequence has a monotone sub-
sequence.

The proof of this theorem requires a preliminary lemma.

Lemma 22.2. Let {an}∞n=1 be a sequence.

(1) If the set of values of the sequence {an | n ∈ N} does not have a maximum
value, then {an}∞n=1 has a subsequence that is strictly increasing.

(2) If the set of values of the sequence {an | n ∈ N} does not have a minimum
value, then {an}∞n=1 has a subsequence that is strictly decreasing.

Proof. (1) Assume that the set of values {an | n ∈ N} does not have a maximum
value.

We define a subsequence recursively. We will recursively choose natural num-
bers n1, n2, n3, . . . so that nk < nk+1 for all k and ank ≤ ank+1

.
We start by setting n1 = 1. Once we have chosen nk, we need to find some

natural number nk+1 > nk such that ank+1
≤ ank . Let b = max{a1, a2, . . . , ank}.

This is some value of the sequence; since the sequence attains no maximum
value, there is some m such that am > b. We must have m > nk, because if
m ≤ nk, then am is on the list a1, a2, . . . , ank , so cannot be larger than b. Thus,
we can take m = nk+1.

This gives a recursive definition for a strictly increasing subsequence.
(2) Similar to (1), or apply (1) to {−an}∞n=1. �

Proof of Bolzano-Weierstrass Theorem 22.1. Let {an}∞n=1 be any sequence. Recall that
our goal is to prove it either has an increasing subsequence or it has a decreasing
subsequence. This is equivalent to showing that if it has no increasing subsequences,
then it does have at least one decreasing subsequence. So, let us assume it has no
increasing subsequences.

We will prove it has at least one decreasing subsequence by constructing the indices
n1 < n2 < · · · of such a subsequence recursively. By the contrapositive of part (1)
Lemma 22.2 , since {an}∞n=1 does not contain any increasing subsequences, we know
that {an | n ∈ N} has a maximum value. That is, there exists a natural number n1

such that an1 ≥ am for all m ≥ 1.
Once we have chosen up through nk, note that the subsequence ank+1, ank+2, ank+3, . . .

also has no increasing subsequence, since a subsequence of such a sequence is a sub-
sequence of the original sequence too. Thus, it must have a maximum value again
by part (1) Lemma 22.2; choose nk+1 such that ank+1

= max{ank+1, ank+2, ank+3, . . . }.
By construction, we have nk+1 > nk. Furthermore, ank is the maximum of a set that
contains ank+1

(since it is later in the sequence). It follows that ank ≥ ank+1
. Thus, we

have constructed recursively a decreasing subsequence of the original sequence. �

Corollary 22.3 (Main Corollary of Bolzano-Weierstrass Theorem). Every bounded
sequence has a convergent subsequence.
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Proof. Suppose {an}∞n=1 is a bounded sequence. By the Bolzano-Weierstrass Theorem
22.1 it admits a monotone subsequence {ank}∞k=1, and it too is bounded (since any
subsequence of a bounded sequence is also bounded.) The result follows since every
monotone bounded sequence converges by the Monotone Convergence Theorem 14.4.

�
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You can use any basic trig facts below to answer the following questions.

• −1 ≤ cos(x) ≤ 1 for all x ∈ R
• cos(x) = 1 ⇐⇒ x ∈ 2πZ
• cos(x) = 0 ⇐⇒ x ∈ π

2 + πZ
• cos(x) = −1 ⇐⇒ x ∈ π + 2πZ

• π /∈ Q
• cos(x) = cos(y) ⇐⇒ x − y ∈ 2πZ or
x+ y ∈ 2πZ

(1) Prove or disprove: Is {cos(πn)}∞n=1 a subsequence of {cos(n)}∞n=1?

(2) Prove or disprove: The sequence {cos(n)}∞n=1 has a convergent subsequence.

(3) Prove or disprove: The sequence {cos(n)}∞n=1 has a constant subsequence.

(4) Prove or disprove: The sequence {cos(n)}∞n=1 has a subsequence that con-
verges to some x > 1.

(a) No; to get a subsequence we would need have natural numbers inside
the cosine, not multiples of π.

(b) True: cos(n) is bounded, so there is a convergent subsequence by Main
Corollary of Bolzano-Weierstrass.

(c) False: in fact, cos(n) never takes the same value twice. If it did, we
would have cos(n) = cos(m) for natural numbers m 6= n, so m − n =
2πk or m + n = 2πk, for some integer k, which would make π = m−n

2k

or π = m+n
2k

, contradicting that π is irrational.
(d) False: if there is a subsequence converging to x > 1, let ε = x− 1 > 0.

Then for some K, for all k > K, | cos(nk) − 1| < ε, which implies
cos(nk) > 1, which is a contradiction.
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23. Wednesday, October 23, 2024 §3.1

Reminder on functions: Given any two sets S and T , a function from S to T ,
written f : S → T , is an assignment to each element s ∈ S a unique element t ∈ T .
The set S is called the domain of f . We will usually consider functions from some
set of real numbers to R. We often11 specify functions by formulas; when we do
this we take the domain to be the set of all real numbers for which the formula
evaluates to a unique real number. In particular,

f(x) = 2x+ 2 and g(x) =
2x2 − 2

x− 1

are not the same function, even though their values agree for all x 6= 1, since their
domains differ.

Definition 23.1: Let S be a subset of R. Let f : S → R be a function, and a and
L be real numbers. We say that the limit of f as x approaches a is L provided:

for any ε > 0 there exists δ > 0 such that if 0 < |x− a| < δ, then x
is in the domain of f and |f(x)− L| < ε.

If this happens, we write lim
x→a

f(x) = L to denote this.

(1) Unpackaging parts of the definition.
(a) Describe {x ∈ R | 0 < |x− 2| < 1} as a union of two open intervals.
(b) For a general a ∈ R and δ > 0, describe {x ∈ R | 0 < |x − a| < δ} as a

union of two open intervals.
(c) Focusing on the “domain” part of the definition, if the limit of f as x

approaches a is L, then f must at least be defined (where?).

(a) (1, 2) ∪ (2, 3)
(b) (a− δ, a) ∪ (a, a+ δ).
(c) on some open intervals to the left and to the right of a.

(2) The ε− δ game.
(a) Player 0 starts by graphing a function f (like a familiar one from calculus)

and specifies an x-value a and a y-value L that (based on previous calculus
knowledge) they think makes limx→a f(x) = L true. [The graph should
be large.]

(b) Player 1 choses an ε. This is how close we would like our function to be to
L. Thus, ε goes up and down from L (corresponding to |f(x) − L| < ε).
Draw horizontal dotted lines with y-values L− ε and L+ ε. [The ε should
be large enough for people to see and have room to work in the picture.]

(c) Player 2 must find a δ such that every x ∈ (a− δ, a) ∪ (a, a+ δ) is
• in the domain of f , and

11Beware: not every function has a formula!
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• has an output f(x) within (L− ε, L+ ε).
Draw vertical dotted lines for the x-values a − δ and a + δ. [Everyone in
the team can assist player 2!]

(d) Repeat with the same graph, players 1& 2 switching roles (and a new ε).

(3) Draw the graph of g(x) =
2x2 − 2

x− 1
. Play the ε − δ game with this function,

a = 1 and L = −3. What happens?

So long as ε < 7, it is impossible for Player 2.

(4) Consider the function g(x) =
2x2 − 2

x− 1
. It is true that limx→1 g(x) = 4.

(a) I claim that for ε = 3, the choice δ = 1.5 “works” to make the rest of the
definition true. Verify this.

(b) Find a δ that “works” for ε = 1.
(c) Find a δ that “works” for ε = 1/2.
(d) Find a δ that “works” for ε > 0.

(a) Let 0 < |x−1| < 1.5, so −.5 < x < 2.5 and x 6= 1. Then f(x) is defined,
since x 6= 1. Also, |f(x)− 4| = |2x+ 2− 4| = |2x− 2| < 2 · 1.5 = 3 = ε
since |x− 1| < 1.5.

(b) Take δ = .5. Let 0 < |x − 1| < .5, so .5 < x < 1.5 and x 6= 1. Then
f(x) is defined, since x 6= 1. Also, |f(x)−4| = |2x+2−4| = |2x−2| <
2 · .5 = 1 = ε since |x− 1| < .5.

(c) Take δ = .25. Let 0 < |x − 1| < .25, so .75 < x < 1.25 and x 6= 1.
Then f(x) is defined, since x 6= 1. Also, |f(x) − 4| = |2x + 2 − 4| =
|2x− 2| < 2 · .25 = .5 = ε since |x− 1| < .25.

(d) Take δ = ε/2. Let 0 < |x − 1| < ε/2. Then f(x) is defined, since
x 6= 1. Also, |f(x) − 4| = |2x + 2 − 4| = |2x − 2| < 2 · ε/2 = ε since
|x− 1| < ε/2.

(5) Consider the function g(x) =
2x2 − 2

x− 1
. It is not true that limx→1 g(x) = −3. I

claim that for ε = 1, there is no choice of δ > 0 that “works” to make the rest
of the definition true. Verify this.

Let δ > 0. Take x = 1 + δ/2. Then |x− 1| = δ/2 is between 0 and δ, and
f(x) = 2x+ 2 = 4 + δ > 4, so |f(x)− (−3)| = |f(x) + 3| > 7 > 1 = ε.
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24. Friday, October 25, 2024 §3.1

Example 24.1. Let f be the function given by the formula

f(x) =
5x2 − 5

x− 1
.

Recall our convention that we interpret the domain of f to be all real numbers where
this rule is defined. So, f : S → R where S = R \ {1}. I claim that the limit of f(x)
as x approaches 1 is 10. To prove it:

Pick ε > 0.
(Scratch work: Since f is defined at all points other that 1, the condition about f

being defined for all x such that 0 < |x − a| < δ will be met for any choice of δ. We
need |f(x) − 10| < ε to hold. Manipulating this a bit, we see that it is equivalent to
|x− 1| < ε

5
. Thus setting δ = ε

5
is the way to go. Back to the proof....)

Let δ = ε
5
. Pick x such that 0 < |x− 1| < δ. Then x 6= 1 and hence f is defined at

x. We have

|f(x)− 10| =
∣∣∣∣5x2 − 5

x− 1
− 10

∣∣∣∣ =

∣∣∣∣5x2 − 5− 10x+ 10

x− 1

∣∣∣∣ =

∣∣∣∣5x2 − 10x+ 5

x− 1

∣∣∣∣
=

∣∣∣∣5(x2 − 2x+ 1)

x− 1

∣∣∣∣ =

∣∣∣∣5(x− 1)2

x− 1

∣∣∣∣ = |5x− 5| = 5|x− 1| < 5δ = ε.

We have shown that for any ε > 0 there is a δ > 0 such that if 0 < |x− 1| < δ, then f
is defined at x and |f(x)− 10| < ε. This proves limx→1 f(x) = 10.

Example 24.2. Let’s do a more complicated example: Let f(x) = x2 with domain all
of R. I claim that limx→2 x

2 = 4. This is intuitively obvious but we need to prove it
using just the definition.

Proof. Pick ε > 0.
(Scratch work: The domain of f is all of R and so we don’t need to worry at all

about whether f is defined at all. We need to figure out how small to make δ so that
if 0 < |x − 2| < δ then |x2 − 4| < ε. The latter is equivalent to |x − 2||x + 2| < ε.
We can make |x− 2| arbitrarily small by making δ aribitrarily small, but how can we
handle |x+2|? The trick is to bound it appropriately. This can be done in many ways.
Certainly we can choose δ to be at most 1, so that if |x− 2| < δ then |x− 2| < 1 and
hence 1 < x < 3, so that |x + 2| < 5. So, we will be allowed to assume |x + 2| < 5.
Then |x−2||x+2| < 5|x−2| and 5|x−2| < ε provided |x−2| < ε

5
. Back to the formal

proof. . . )
Let δ = min{ ε

5
, 1}. Let x be any real number such that 0 < |x− 2| < δ. Then

certainly f is defined at x. Since δ ≤ 1 we get |x− 2| < 1 and hence |x+ 2| ≤ 5. Since
δ ≤ ε

5
we have |x− 2| < ε

5
. Putting these together gives

|f(x)− 4| = |x2 − 4| = |x− 2||x+ 2| < |x− 2|5 < ε

5
5 = ε.

This proves limx→2 x
2 = 4. �
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25. Monday, October 28, 2024 §3.1

(1) Let b ∈ R be a real number. Use the ε− δ definition of limit to prove that for
any a ∈ R,

lim
x→a

b = b.

Let ε > 0. Take δ = 1 (or δ = ε, or δ is literally anything positive).
Then if x is a real number such that 0 < |x − a| < δ, then f is defined at
x because the domain is all real numbers, and |f(x)− b| = |b− b| = 0 < ε.
This shows that lim

x→a
b = b.

(2) Let m, b ∈ R be real numbers. Use12 the ε− δ definition of limit to prove that
for any a ∈ R,

lim
x→a

mx+ b = ma+ b.

The case where m = 0 follows from the previous part, so assume m 6= 0.
Let ε > 0. Take δ = ε

|m| . Since ε > 0 and |m| > 0, this is greater than zero.

Then if x is a real number such that 0 < |x− a| < δ, then f is defined at x
because the domain is all real numbers, and

|f(x)− (ma+ b)| = |(mx+ b)− (ma+ b)| = |m(x− a)| = |m| · |x− a| < |m|δ = ε.

This shows that lim
x→a

f(x) = ma+ b.

(3) In this problem we will prove that the function f(x) =
1

x− 3
does not have a

limit as x approaches 3.
(a) What proof technique should we use? Write down the start of the proof.
(b) If limx→a f(x) = L then for any positive number ε that we choose, we get

a more specific true statement as a consequence of the definition. Write
down what statement we get when ε = 1.

(c) Explain why there exists some real number x such that 3 < x < min{4, 3 + δ}.
(d) Use the number x from the previous part to show that L > 0.
(e) Do something else to show that L < 0 and conclude the proof.

By way of contradiction, suppose that there is some L ∈ R such that
limx→3 f(x) = L. In particular, taking ε = 1, by definition of limit there is
some δ > 0 such that if 0 < |x− 3| < δ, then | 1

x−3 − L| < 1.
Since δ > 0, both 3 + δ and 4 are larger than 3, so there is some real

number x such that 3 < x < min{3+δ, 4}. For this x, we have 0 < x−3 < 1,
so 1

x−3 > 1. For this same x, we also have | 1
x−3 − L| < 1. Rearranging the

latter, we have 1
x−3 − 1 < L < 1

x−3 + 1, so in particular L > 0.

12Suggestion: You may want to consider the case where m = 0 separately..
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On the other hand, both 3 − δ and 2 are less than 3, so there is some
real number x such that 3 > x > max{3 − δ, 2}. For this x, we have
−1 < x− 3 < 0, so 1

x−3 < −1. For this same x, we also have | 1
x−3 −L| < 1.

Rearranging the latter, we have 1
x−3 − 1 < L < 1

x−3 + 1, so in particular
L < 0.

We have obtained mutually exclusive conditions on L, which is a contra-
diction. It follows that no such L can exist.

(4) Prove that the limit of f as x approaches a, if it exists, is unique.

By way of contradiction, suppose that there is some function f , and real
numbers a, L, M , such that limx→a f(x) = L and limx→a f(x) = M , with

L 6= M . Set ε = |L−M |
3

, which is positive. Then there is some δ1 > 0
such that if 0 < |x − a| < ε, then f is defined and |f(x) − L| < ε. There
is also some δ2 > 0 such that if 0 < |x − a| < ε, then f is defined and
|f(x)−M | < ε. Take x such that 0 < |x− a| < min{δ1, δ2}. Then for this

x, both |f(x) − L| < |L−M |
3

and |f(x) −M | < |L−M |
3

are true. But them

by the triangle inequality, |L−M | ≤ |f(x)− L| + |f(x)−M | < 2 |L−M |
3

, a
contradiction. Thus the limit of f as x approaches a, if it exists, must be
unique.

(5) Let

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q.

Use the definition to show that limx→a f(x) does not exist for any real number a.
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26. Wednesday, October 30, 2024 §3.2

Theorem 26.1: Let f(x) be a function and let a be a real number. Let
r > 0 be a positive real number such that f is defined at every point of
{x ∈ R | 0 < |x− a| < r}. Let L be any real number.

Then limx→a f(x) = L if and only if for every sequence {xn}∞n=1 that converges
to a and satisfies 0 < |xn − a| < r for all n, we have that the sequence {f(xn)}∞n=1

converges to L.

Theorem 26.2. (Algebra and limits of functions): Suppose f and g are two
functions and that a is a real number, and assume that

lim
x→a

f(x) = L and lim
x→a

g(x) = M

for some real numbers L and M . Then

(1) limx→a(f(x) + g(x)) = L+M .
(2) For any real number c, limx→a(c · f(x)) = c · L.
(3) limx→a(f(x) · g(x)) = L ·M .
(4) If, in addition, we have that M 6= 0, then limx→a(f(x)/g(x)) = L/M .

Theorem 26.3. (Squeeze Theorem for limits): Suppose f , g, and h are three
functions and a is a real number. Suppose there is a positive real number r > 0
such that

• each of f, g, h is defined on {x ∈ R | 0 < |x− a| < r},
• f(x) ≤ g(x) ≤ h(x) for all x such that 0 < |x− a| < r, and
• limx→a f(x) = L = limx→a h(x) for some number L.

Then limx→a g(x) = L.

(1) Use Theorem 26.1 to show that lim
x→0

sin

(
1

x

)
does not exist.

Suggestion: Let f(x) = sin( 1
x
) and suppose limx→0 f(x) = L. Find sequences

{xn}n=1 and {yn}n=1 such that
• {xn}n=1 and {yn}n=1 both converge to 0,
• f(xn) = 1 for all n, and
• f(yn) = −1 for all n.

You can use any trig facts on the bottom of the page.

Suppose limx→0 f(x) = L. Let {xn}∞n=1 = { 1
π
2
+2πn
}∞n=1. This sequence

converges to 0 and f(xn) = 1 for all n, so {f(xn)}∞n=1 converges to 1. Thus,
L = 1. Now let {yn}∞n=1 = { 1

−π
2

+2πn
}∞n=1. This sequence converges to 0 and

f(yn) = −1 for all n, so {f(yn)}∞n=1 converges to −1. Thus, L = −1. This
is a contradiction, so no such L exists.
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(2) Use Theorem 26.2 plus a fact from last time13 to compute lim
x→2

3x2 − x+ 2

x+ 3
.

We have limx→2 x = 2 and the limit of a constant is the value of that
constant. Thus limx→2 x+ 3 = 2 + 3 = 5, and limx→2 x

2 = (limx→2 x)2 = 4,

so limx→2 3x2 − x+ 2 = 3 · 4− 2 + 2 = 12, and hence lim
x→2

3x2 − x+ 2

x+ 3
= 5.

(3) Use Theorem 26.3 to show that lim
x→0

x sin

(
1

x

)
= 0. You can use any trig facts

on the bottom of the page.

We have −1 ≤ sin
(
1
x

)
≤ 1, so −|x| ≤ x sin

(
1
x

)
≤ |x|. We know

that limx→0 |x| = 0 and hence limx→0 −|x| = 0 by the Theorem on al-
gebra of limits of functions. Then by the Squeeze theorem for functions,

lim
x→0

x sin

(
1

x

)
= 0.

(4) Use Theorem 26.1 to deduce Theorem 26.3 from our Squeeze Theorem for se-
quences.

Proof. Let f, g, h, a, r, L be as in the statement. Let {xn}∞n=1 be a se-
quence that converges to a and such that 0 < |xn − a| < r for all n.
By Theorem 26.1, it suffices to show that limn→∞ g(xn) = L. By The-
orem 26.1, we know that limn→∞ f(xn) = L = limn→∞ h(xn). Since
f(xn) ≤ g(xn) ≤ h(xn) for all n, we have limn→∞ g(xn) = L by the Squeeze
Theorem (for sequences). �

(5) Use Theorem 26.1 to deduce Theorem 26.2 part (1) from our Theorem on
algebra and sequences.

Proof. First, as a technical matter, we note that since we assume
limx→a f(x) = L there is a positive real number r1 such that f(x) is defined
for all x satisfying 0 < |x − a| < r1, and likewise since limx→a g(x) = M
there is a positive real number r2 such that g(x) is defined for all x satisfying
0 < |x− a| < r2. Letting r = min{r1, r2}, we have that r > 0 and f(x) and
g(x) and hence f(x) + g(x) are defined for all x satisfying 0 < |x− a| < r.
(We needed to prove this in order to apply Theorem 26.1.)

Let {xn}∞n=1 be any sequence converging to a such that 0 < |xn − a| < r
for all n. By Theorem 26.1 in the “forward direction”, we have that
limn→∞ f(xn) = L and limn→∞ g(xn) = M . By limits and algebra theo-
rem for sequences,

13limx→a mx+ b = ma+ b. In particular, limx→a x = a and limx→b b = b.
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limn→∞ f(xn) + g(xn) = L+M . So, by Theorem 26.1 again (this time ap-
plying it to f(x) + g(x) and using the “backward implication”), it follows
that limx→a(f(x) + g(x)) = L+M . �

(6) Use Theorem 26.1 to deduce Theorem 26.2 part (4) from our Theorem on
algebra and sequences.

Proof. Since we assume limx→a f(x) = L there is a positive real number
r1 such that f(x) is defined for all x satisfying 0 < |x − a| < r1. Since
limx→a g(x) = M there is a positive real number r2 such that g(x) is defined
for all x satisfying 0 < |x − a| < r2. Since M 6= 0, |M | > 0, and applying
definition of limit, there is some δ > 0 such that if 0 < |x − a| < δ, then
|g(x) −M | < |M |, and hence by the reverse triangle inequality, |g(x)| ≥
||M | − |g(x)−M || > 0, so g(x) 6= 0.

Letting r = min{r1, r2, δ}, we have that r > 0 and f(x), g(x), 1/g(x),
and hence f(x)/g(x) are defined for all x satisfying 0 < |x− a| < r.

Let {xn}∞n=1 be any sequence converging to a such that 0 < |xn − a| < r
for all n. By Theorem 26.1 in the “forward direction”, we have that
limn→∞ f(xn) = L and limn→∞ g(xn) = M . Since M 6= 0 and g(xn) 6= 0 for
all n ∈ N, by the limits and algebra theorem for sequences,
limn→∞ f(xn)/g(xn) = L/M . So, by Theorem 26.1 again, it follows that
limx→a(f(x)/g(x)) = L/M . �

• −1 ≤ sin(x) ≤ 1 for all x ∈ R
• sin(x) = 1 ⇐⇒ x ∈ π

2 + 2πZ
• sin(x) = 0 ⇐⇒ x ∈ πZ
• sin(x) = −1 ⇐⇒ x ∈ −π2 + 2πZ

• π /∈ Q
• sin(x) = sin(y) ⇐⇒ x − y ∈ 2πZ or
x+ y ∈ π + 2πZ
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Proof of Theorem 26.1. Let f be a function, a ∈ R, and r > 0 a positive real number
such that f is defined on {x ∈ R | 0 < |x− a| < r}.

(⇒) Assume limx→a f(x) = L. Let {xn}∞n=1 be any sequence that converges to a and
is such that 0 < |xn− a| < r for all n. We need to prove that the sequence {f(xn)}∞n=1

converges to L.
Pick ε > 0. By definition of the limit of a function, there is a δ > 0 such that if

0 < |x − a| < δ, then f is defined at x and |f(x)− L| < ε. Since δ > 0 and {xn}∞n=1

converges to a, by the definition of convergence, there is an N such that if n ∈ N and
n > N then |xn − a| < δ. I claim that this N “works” to prove {f(xn)}∞n=1 converges
to L too: If n ∈ N and n > N , then |xn − a| < δ and, since xn 6= a for all n, we have
0 < |xn−a| < δ. It follows that |f(xn)−L| < ε. This shows that {f(xn)}∞n=1 converges
to L.

(⇐) We prove the contrapositive. That is, assume limx→a f(x) is not L (including
the case where the limit does not exist). We need to prove that there is at least one
sequence {xn}∞n=1 such that (a) it converges to a, (b) 0 < |xn− a| < r for all n and yet
(c) the sequence {f(xn)}∞n=1 does not converge to L.

The fact that limx→a f(x) is not L means:

There is an ε > 0 such that for every δ > 0 there exists an x ∈ R such
that 0 < |x− a| < δ, but either f is not defined at x or |f(x)− L| ≥ ε.

For this ε, for any natural number n, set δn = min{ 1
n
, r}. We get that there is a

xn ∈ R such that 0 < |xn − a| < δn and |f(xn) − L| ≥ ε. (Note that f is necessarily
defined at xn since δn ≤ r.) I claim that the sequence {xn}∞n=1 satisfies the needed three
conditions. (a) Since δn ≤ 1

n
, we have a− 1

n
< xn < a + 1

n
for all n, and hence by the

Squeeze Lemma, the sequence {xn}∞n=1 converges to a. (b) This holds by construction,
since δn ≤ r. (c) Since, for the positive number ε above, we have |f(xn) − L| ≥ ε for
all n, the sequence {f(xn)}∞n=1 does not converge to L. �
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27. Friday, November 1, 2024 §3.3

Prove or disprove:

(1) lim
x→−1

√
1− x2 = 0.

This is false. To disprove it, suppose by way of contradiction that
lim
x→−1

√
1− x2 = 0. Take ε = 1. Then by assumption there is some δ > 0

such that for all real numbers x such that 0 < |x+ 1| < δ, then
√

1− x2 is
defined and |

√
1− x2| < ε. But, given δ > 0, the real number x = −1− δ/2

satisfies 0 < |x+ 1| < δ, but 1− x2 < 0, so
√

1− x2 is not defined. This is

a contradiction. We conclude that lim
x→−1

√
1− x2 = 0 is false.

(2) If f : R r {0} → R is a function with lim
x→0

f(x) = 5, then the sequence{
f
(
2
n

)2}∞
n=1

converges to
4

25
.

This is false. In fact,
{
f
(
2
n

)2}∞
n=1

converges to 25. Indeed, note that

{ 2
n
}∞n=1 converges to 0, and is not equal to zero for any n. Thus, by Theorem

26.1 (applied with r = 2, for example) we deduce that {f( 2
n
)}∞n=1 converges

to 5. Then by limits and algebra, {f( 2
n
)2}∞n=1 converges to 52 = 25.

(3) If lim
x→1

f(x) does not exist, then lim
x→1

(x2 + f(x)) also does not exist.

This is true. We prove the contrapositive. Suppose that lim
x→1

(x2 + f(x))

exists, and call it L. Note that lim
x→1

x2 = 1. Then lim
x→1

f(x) = L− 1 by limits

of functions and algebra. In particular it exists.

(4) Let f, g be two functions with domain all real numbers x such that x 6= 1. If

lim
x→1

f(x) and lim
x→1

g(x) both exist, then lim
x→1

f(x)

g(x)
exists.
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28. Monday, November 4, 2024 §3.2

We come to the formal definition of continuity. We first define what it means for
a function to be continuous at a single point, but ultimately we will be interested in
functions that are continuous on entire intervals.

Definition 28.1. Suppose f is a function and a is a real number. We say f is
continuous at a provided the following condition is met:

For every ε > 0 there is a δ > 0 such that if x is a real number such
that |x− a| < δ then f is defined at x and |f(x)− f(a)| < ε.

Remark 28.2. If f is continuous at a, then by applying the definition using any positive
number ε > 0 you like (e.g., ε = 1) we get that there exists a δ > 0 such that f is
defined for all x such that a− δ < x < a+ δ. That is, in order for f to be continuous
at a it is necessary (but not sufficient) that f is defined at all points near a including
at a itself. In particular, unlike in the definition of “limit”, f must be defined at a in
order for it to possibly be continuous at a.

Example 28.3. I claim f(x) = 3x is continuous at a for every value of a. Pick ε > 0.
Let δ = ε

3
. If |x− a| < δ then f is defined at x (since the domain of f is all of R) and

|f(x)− f(a)| = |3x− 3a| = 3|x− a| < 3δ = ε.

Example 28.4. The function f(x) with domain R defined by

f(x) =

{
2x− 7 if x ≥ 3 and

−x if x < 3

is not continuous at 3. Since the domain of f is all of R, the negation of the definition
of “continuous at 3” is:

there is an ε > 0 such that for every δ > 0 there is a real number x such
that |x− 3| < δ and |f(x)− f(3)| ≥ ε.

Set ε = 1. For any δ > 0, we may choose a real number x so that 3− δ < x < 3 and
2.9 < x < 3. For such an x, we have

|f(x)− f(3)| = | − x+ 1| = x− 1 > 1.9 > ε.

The proves f is not continuous at 3.

The definition of continuous looks a lot like the definition of limit, with L replaced
by f(a). This is not just superficial:

Theorem 28.5. Suppose that f is a function and a is a real number and assume that
f is defined at a. Then f is continuous at a if and only if limx→a f(x) = f(a).

Proof. (⇒) This is immediate from the definitions.
(⇐) This is almost immediate from the definitions: Suppose limx→a f(x) = f(a).

Pick ε > 0. Then there is a δ such that if 0 < |x− a| < δ, then f is defined at x and
|f(x)−f(a)| < ε. This nearly gives that f is continuous at a by definition, except that
we need to know that if |x− a| < δ, then f is defined at x and |f(x)− f(a)| < ε. The
only “extra” case is the case x = a. But if x = a, then f is defined at a by assumption
and we have |f(x)− f(a)| = 0 < ε. �
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Remark 28.6. Remember, when we write limx→a f(x) = f(a) we mean that the limit
exists and is equal to the number f(a). So, by this Lemma, if limx→a f(x) does not
exist, then f is not continuous at a.

Example 28.7. The function f(x) =
√
x is continuous at a for every a > 0. This

holds since for any a > 0, as you proved on the homework we have

lim
x→a

√
x =
√
a.

Theorem 28.8. Let a ∈ R and suppose f and g are two functions that are both
continuous at a. Then so are

(1) f(x) + g(x),
(2) c · f(x), for any constant c,
(3) f(x) · g(x), and

(4) f(x)
g(x)

provided g(a) 6= 0.

Proof. Follows from Theorems 28.5 and 26.2. �

Example 28.9. Polynomials are continuous everywhere. The function x is continuous
everywhere (since limx→a x = a). By part (3) above and a simple induction, xn is
continuous everywhere for every n. Then by parts (1) and (2), it follows that every
polynomial is continuous everywhere.

Recall that for functions f and g, f ◦ g is the composition: it is the function that
sends x to f(g(x)). The domain of f ◦ g is

{x ∈ R | x is the domain of g and g(x) is in the domain of f}.

Theorem 28.10. Suppose g is continuous at a point a and f is continuous at g(a).
Then f ◦ g is continuous at a.

Proof. Let a ∈ R be such that that g is continuous at a and f is continuous at g(a).
We will that prove f ◦ g is continuous at a using the definition.

Pick ε > 0. Since f is continuous at g(a), there is a γ > 0 such that if |y− g(a)| < γ
then f is defined at y and |f(y)− f(g(a))| < ε. (We are using y in place of the usual
x for clarity below, and we are calling this number γ, and not δ, since it is not the δ
we are seeking.) Since γ > 0 and g is continuous at a, there is a δ > 0 such that if
|x− a| < δ then g is defined at x and |g(x)− a| < γ.

This δ “works” to prove f ◦ g is continuous at a: Let x be any real number such
that |x− a| < δ. Then g is defined at x and |g(x)− g(a)| < γ. Taking y = g(x) above,
this gives that f is defined at g(x) and |f(g(x)) − f(g(a))| < ε. This proves f ◦ g is
continuous at a. �
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29. Wednesday, November 6, 2024 §3.2

(1) Let

f(x) =

{
2x if x ≥ 1

x+ 1 if x < 1.

Use the ε− δ definition to show that f(x) is continuous at 1.

Let ε > 0. Take δ = ε/2. Let x be a real number such that |x − 1| < δ.
Then f(x) is defined, since the domain of f is all real numbers. To show
that |f(x) − f(1)| < ε, we proceed by cases. If x ≥ 1, then f(x) = 2x, so
|f(x) − f(1)| = |2x − 2| = 2|x − 1| = 2δ < ε. If x < 1, then f(x) = x + 1,
so |f(x) − f(1)| = |x + 1 − 2| = |x − 1| = δ < ε. This shows that f is
continuous at x = 1.

(2) Which of the following functions are continuous on R?

• f(x) =
√
x2 + 5.

• Every polynomial function.
• f(x) =

√
x.

• f(x) =
1

x
.

• f(x) =
√
x2 + 5 yes: h(x) = x2 + 5 is continuous at any real number

R, and h(x) ≥ 5. Then g(x) =
√
x is continuous at any x > 0, so for

any x, g is continuous at h(x), so f(x) = g(h(x)) is continuous for any
x.
• Yes Polynomials are continuous everywhere.
• No

√
x is not continuous for x ≤ 0. Not even defined for x < 0!

• f(x) =
1

x
is not continuous at 0.

(3) Which of the following functions are continuous on (0,∞)?

• f(x) =
√
x2 + 5.

• Every polynomial function.
• f(x) =

√
x.

• f(x) =
1

x
.

All of the above.

(4) Prove that j(x) =

{
x sin(1/x) if x 6= 0

0 if x = 0
is continuous14 on R.

14You can use without proof that sin(x) is continuous on R.
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First we show j is continuous at x = 0. Let ε > 0 and take δ = ε. Then
for any x such that |x| < δ, j(x) is defined and |j(x)−j(0)| = |x sin(1/x)| ≤
|x| < ε.

Then if x 6= 0, 1
x

is continuous at x by continuity and algebra, and then
sin(1/x) is continuous at x as compositions of continuous functions are
continuous.

(5) Prove or disprove: If f and g are continuous at a, then f/g is continuous at a.

No, if g(a) = 0, then f/g(a) is not even defined!

(6) Prove or disprove: If f and g are two functions, a ∈ R, and f(a) = g(a), then
f is continuous at a if and only if g is continuous at a.

(7) Prove or disprove: If f and g are two functions, a < b, and f(x) = g(x) for all
x ∈ (a, b), then f is continuous on (a, b) if and only if g is continuous on (a, b).
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30. Friday, November 8, 2024 §3.3

The definition of continuous on a closed interval [a, b] is actually a bit different: we
shouldn’t necessarily ask that f be continuous at a, since to know that would have
to use something about f on input values outside of our interval!

Definition 30.1: Given a function f(x) and real numbers a < b, we say f is
continuous on the closed interval [a, b] provided

(1) for every r ∈ (a, b), f is continuous at r in the sense defined already,
(2) for every ε > 0 there is a δ > 0 such that if a ≤ x < a + δ, then f(x) is

defined and |f(x)− f(a)| < ε.
(3) for every ε > 0 there is a δ > 0 such that if b − δ < x ≤ b, then
|f(x)− f(b)| < ε.

Example 30.2: The function f(x) =
√

1− x2 is continuous on the closed interval
[−1, 1], even though f is not continuous at x = −1 or x = 1.

Theorem 30.3. (Intermediate Value Theorem): Let a < b and f(x) be a
function that is continuous on the closed interval [a, b]. If y is any real number
between f(a) and f(b), then there is some c ∈ [a, b] such that f(c) = y. More
precisely, if f(a) ≤ y ≤ f(b) or f(b) ≤ y ≤ f(a), then there is some c ∈ [a, b] such
that f(c) = y.

(1) Explain why if f is continuous at x for every x ∈ [a, b], then f is continuous on
the closed interval [a, b]. In particular, if f is continuous on any open interval
containing [a, b], then f is continuous on [a, b]. Conclude that every polynomial
is continuous on every closed interval.

Condition (1) is automatic. If f is continuous at a then there is a δ such
that if a − δ < x < a + δ then f(x) is defined and |f(x)− f(a)| < ε; in
particular, for the same δ, if a ≤ x < a + δ, then a − δ < x < a + δ and
hence f(x) is defined and |f(x)− f(a)| < ε. Similarly for continuity at b
and condition (3).

(2) Draw a picture the Intermediate Value Theorem as follows:
• Mark some a and b on the x-axis.
• Graph a function f that is continuous on [a, b].
• Mark f(a) and f(b) on the y-axis.
• Pick some y in between f(a) and f(b), and make a horizontal line for this
y-value.
• Does it intersect the graph of f?
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Repeat with at least one graph that is increasing, at least one graph that is
decreasing, and at least one graph that is neither increasing nor decreasing.

(3) Prove or disprove: There is a real number x ∈ [0, 2] such that x3 − 3x = 1.

Take f(x) = x3 − 3x. It is a polynomial and hence continuous on [0, 2].
Then f(0) = 0 < 1 < 2 = f(2), so there is some c ∈ [−1, 1] with f(c) = 1.

(4) Prove or disprove: There are at least two real numbers x ∈ [0, 2] such that
x3 − 3x = −1.

Take the same f(x) = x3 − 3x. Then f(0) = 0 > −1 > −2 = f(1), so
there is some c1 ∈ [0, 1] with f(c1) = 1. Also, Then f(1) = −2 < −1 < 2 =
f(2), so there is some c2 ∈ [1, 2] with f(c2) = 1. We know that c1 6= 1 and
c2 6= 1 since f(1) 6= 1, so c1 6= c2. Thus there are two values that output
−1.

(5) Give a counterexample to the statement of the Intermediate Value Theorem
without the hypothesis that f is continuous on the closed interval [a, b].

Take

f(x) =

{
x if x < 0

x+ 2 if x ≥ 0.

Then f(−1) < 1 < f(1), but there is no x ∈ [−1, 1] with f(x) = 1.

(6) True or false: If f(x) is continuous on the closed interval [a, b], and y is not in
between f(a) and f(b), then there is no c ∈ [a, b] such that f(c) = y.

From the previous problem f(x) = x3 − 3x on [0, 2] with y = −1 is a
counterexample.

(7) Use the Intermediate Value Theorem to prove that every positive real number
has a square root.
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32. Wednesday, November 12, 2024 §3.3

Theorem 32.1 (Boundedness Theorem): Suppose f is continuous on the
closed interval [a, b] for some real numbers a, b with a < b. Then f is bounded on
[a, b] — that is, there are real numbers m and M so that m ≤ f(x) ≤ M for all
x ∈ [a, b].

Theorem 32.2 (Extreme Value Theorem): Assume f is continuous on the
closed interval [a, b] for some real numbers a and b with a < b. Then f attains a
minimum value and a maximum value on [a, b] — that is, there exists a number
r ∈ [a, b] such that f(x) ≤ f(r) for all x ∈ [a, b] and there exists a number s ∈ [a, b]
such that f(x) ≥ f(s) for all x ∈ [a, b].

(1) Let f(x) =
√
x2 + 3.

(a) Is f(x) continuous on the closed interval [−1, 2]?
(b) According to the theorems, does f attain a minimum value and/or a max-

imum value on [−1, 2]?
(c) Find the minimum value and maximum value of f on [−1, 2].

(a) Yes; this is a composition of a polynomial with the square root function,
the latter of which is continuous for x > 0.

(b) Yes; the Extreme Value Theorem applies.
(c) The minimum value is f(0) =

√
3 and the maximum is f(2) =

√
7.

(2) In this problem we explore the necessity of the hypotheses in these theorems.
(a) Draw a graph of a function on a closed interval [a, b] that is not continuous,

and is not bounded on [a, b].
(b) Draw a graph of a function that is continuous on an open interval (a, b),

but is not bounded on (a, b).
(c) Draw a graph of a function that is continuous on an open interval (a, b),

and is bounded on (a, b), but for which the conclusion of the Extreme Value
Theorem fails.

Can you find formulas of functions that match each story?

(a) For example, take f(x) =

{
1/x if x 6= 0

0 if x = 0
on [−1, 1].

(b) For example, take f(x) = 1/x on (0, 1).
(c) For example, take f(x) = x on (0, 1).

(3) Prove or disprove: If f is continuous on a closed interval [a, b], then f attains
its minimum at a unique input value: that is, there is a unique r ∈ [a, b] such
that f(r) ≤ f(x) for all x ∈ [a, b].
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False: e.g., f(x) = x2 on [−1, 1].

(4) Prove or disprove: If f is continuous on an open interval (a, b), then f either
does not attain a minimum or does not attain a maximum on (a, b).

False: e.g., f(x) = sin(x) on (0, 2π).

(5) True or false: A constant function attains a minimum value and a maximum
value on any closed interval [a, b].

True: it achieves both its minimum and its maximum at every value of
the interval!

(6) Explain why the Extreme Value Theorem actually implies the Boundedness
Theorem. (The reason we state both is that we will have to first prove the
Boundedness Theorem on the way to the Extreme Value Theorem.)

Take M = f(r) and m = f(s).

Definition: Let I be an interval (either open or closed) and f a function defined
on all of I.

• We say that f is increasing on I if for any x, y ∈ I with x < y, we have
f(x) ≤ f(y).
• We say that f is decreasing on I if for any x, y ∈ I with x < y, we have
f(x) ≥ f(y).
• We say that f is monotone on I if f is either increasing on I or decreasing

on I.
• We say that f is strictly increasing on I if for any x, y ∈ I with x < y,

we have f(x) < f(y).
• We say that f is strictly decreasing on I if for any x, y ∈ I with x < y,

we have f(x) > f(y).
• We say that f is strictly monotone on I if f is either increasing on I or

decreasing on I.

(7) Suppose that f is strictly monotone on (a, b). Show that f does not attain
either a minimum or a maximum on (a, b).

For a first case, suppose that f is strictly increasing. For a contradic-
tion, suppose that f attains a minimum at r ∈ (a, b). There is some x
between a and r, so x ∈ (a, b) and x < r. Then by definition of strictly
increasing, f(x) < f(r), contradicting that f attains a minimum at r. The



76 FALL 2024 MATH 325 LECTURE NOTES AND WORKSHEETS

argument that f does not attain a maximum is similar, using instead a
number between r and b.

The strictly decreasing case is similar.

(8) Let f be continuous on the closed interval [−7, 3]. Show that if f is one-to-one15,
then f must be strictly monotone.

For starters, we know that f(−7) 6= f(3). For a first case, suppose that
f(−7) < f(3). We will show that f is strictly increasing. Let x, y ∈ (a, b)
with x < y. To attain a contradiction, suppose that f(x) ≥ f(y). If
f(y) > f(a), then we can apply the IVT to f on [a, x] and obtain some
c ∈ [a, x] with f(c) = f(y); if f(y) < f(a), then we can apply IVT to
f on [y, b] and obtain some c ∈ [y, b] such that f(c) = f(a). Either way,
we contradict the assumption that f is one-to-one. Thus, we must have
f(x) < f(y). This means f is strictly increasing.

The case f(−7) > f(3) is similar.

(9) Prove or disprove: Let f be continuous on R. If f does not attain a minimum
on the half-open interval (0, 1] then there is some a ∈ (0, 1) such that f is
strictly increasing on (0, 1).

This is false! One counterexample is f(x) = 2x+ x sin
(
1
x

)
.

15This means that x 6= y implies f(x) 6= f(y) for all x, y in the domain of f .
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33. Friday, November 15, 2024 §3.3

Intermediate Value Theorem: Suppose f is a function, that a < b are real
numbers, and that f is continuous on the closed interval [a, b]. If y is any number
between f(a) and f(b) (i.e., f(a) ≤ y ≤ f(b) or f(a) ≥ y ≥ f(b)), then there is a
c ∈ [a, b] such that f(c) = y

Boundedness Theorem: Suppose f is continuous on the closed interval [a, b] for
some real numbers a, b with a < b. Then f is bounded on [a, b] — that is, there
are real numbers m and M so that m ≤ f(x) ≤M for all x ∈ [a, b].

Extreme Value Theorem: Assume f is continuous on the closed interval [a, b]
for some real numbers a and b with a < b. Then f attains a minimum value
and a maximum value on [a, b] — that is, there exists a number r ∈ [a, b] such
that f(x) ≤ f(r) for all x ∈ [a, b] and there exists a number s ∈ [a, b] such that
f(x) ≥ f(s) for all x ∈ [a, b].

Lemma 33.1: Assume f is continuous on [a, b] and that {xn}∞n=1 is any sequence
such that a ≤ xn ≤ b for all n. If {xn}∞n=1 converges to some number r, then

(1) r ∈ [a, b] and
(2) The sequence {f(xn)}∞n=1 converges to f(r).

(1) Proof of Boundedness Theorem:
We will argue that f is bounded above on [a, b]: i.e., there exists an M
such that f(x) ≤ M for all x ∈ [a, b]; showing that f is bounded below is
similar (or follows from this part applied to −f).

(a) We argue by contradiction. What does it mean to suppose that the theorem
is false? Assume it.

(b) Explain why there must be a sequence {xn}∞n=1 with xn ∈ [a, b] and f(xn) >
n for all n ∈ N.

(c) Apply Bolzano-Weierstrass to the sequence {xn}∞n=1. What do you get?
(d) Now apply the Lemma. What do you get?

(a) If the Theorem is false, there is a function f that is continuous on the
closed interval [a, b] but the set of values of f on [a, b] is either un-
bounded above or unbounded below. Assume we have such a function
that is unbounded above.

(b) By assumption, for every n ∈ N, n is not an upper bound for the values
of f on [a, b]. Thus, for every n ∈ N, there is some xn with f(xn) > n.
This gives us a sequence {xn}∞n=1 with xn ∈ [a, b] and f(xn) > n for all
n ∈ N

(c) The sequence {xn}∞n=1 has a convergent subsequence {xnk}∞k=1.
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(d) Since xnk ∈ [a, b] for all k, by the lemma we have first that {xnk}∞k=1

converges to r ∈ [a, b], and second, that {f(xnk)}∞k=1 converges to f(r).
But since f(xnk) > nk ≥ k, the sequence {f(xnk)}∞k=1 diverges (to +∞
in fact). This is a contradiction, so we conclude that the set of values
of f is bounded above. A similar argument (or the same case applied
to −f) shows that the set of values of f is also bounded below.

(2) Proof of Extreme Value Theorem:
We will find a maximum value; finding a minimum value is similar (or
follows from this part applied to −f).

(a) Let R = {f(x) | x ∈ [a, b]}. Explain why R has a supremum; call it `.
(b) Explain why there must be a sequence {xn}∞n=1 with xn ∈ [a, b] and `− 1

n
<

f(xn) ≤ ` for all n ∈ N.
(c) Apply Bolzano-Weierstrass to the sequence {xn}∞n=1. What do you get?
(d) Now apply the Lemma from the homework. What do you get?

We will find a maximum value; finding a minimum value is similar (or
follows from this part applied to −f).

(a) Let R = {f(x) | x ∈ [a, b]}. R is nonempty since f(a) ∈ R, and
it is bounded above by the Boundedness Theorem. Thus R has a
supremum, which we will call `.

(b) For any n, ` − 1
n
< sup(R), so it is not an upper bound for R. This

means that there is some yn ∈ R with ` − 1
n
< yn; since ` is an upper

bound for R we also have `− 1
n
< yn ≤ `. By definition of R, there is

some xn ∈ [a, b] with f(xn) = yn. Thus, we have a sequence {xn}∞n=1

with xn ∈ [a, b] and `− 1
n
< f(xn) ≤ ` for all n ∈ N.

(c) The sequence {xn}∞n=1 has a convergent subsequence {xnk}∞k=1.
(d) Since xnk ∈ [a, b] for all k, by the lemma we have first that {xnk}∞k=1

converges to r ∈ [a, b], and second, that {f(xnk)}∞k=1 converges to f(r).
Since ` − 1

nk
< f(xnk) ≤ `, the sequence {f(xnk)}∞k=1 converges to

` by the Squeeze Theorem. Thus, f(r) = `. Then, by definition of
supremum, we have that f(x) ≤ f(r) for all x ∈ [a, b].

(3) Prove Lemma 33.1.

For part (1), to show that r ≤ b, by way of contradiction suppose that
r > b. Taking ε = r − b in the definition of “converges to r” we see that
there is some N ∈ R such that if n > N and n ∈ N then an > r − ε = b,
which contradicts that an ≤ b for all n. The inequality r ≥ a is similar.

To prove (2) we proceed in cases:
Case 1: a < r < b. Let ε > 0. Since f is continuous at r, there is some

δ > 0 such that if |x − r| < δ, then |f(x) − f(r)| < ε. Using this positive



FALL 2024 MATH 325 LECTURE NOTES AND WORKSHEETS 79

number δ in the definition of the sequence {xn} to converge to r, there is
some N ∈ R such that if n > N , then |xn − r| < δ. Consequently, for this
N , if n > N , then |f(xn) − f(r)| < ε. This means that {f(xn)} converges
to f(r).

Case 2: r = a. Similarly to above, let ε > 0. By definition, there is some
δ > 0 such that if a ≤ x < a + δ then |f(x) − f(a)| < ε. Again using δ in
the definition of the sequence {xn} to converge to r, there is some N ∈ R
such that if n > N , then |xn − a| < δ. By our hypotheses on {xn} we must
have a ≤ xn < a + δ for n > N . Consequently, for this N , if n > N , then
|f(xn)− f(r)| < ε. Again, this means that {f(xn)} converges to f(r).

Case 3: r = b. Similar to Case 2.

(4) Proof of the Intermediate Value Theorem:
(a) Let’s assume that f(a) ≤ f(b) to get started. Explain why the cases

y = f(a) and y = f(b) are easy. Hence, we assume that f(a) < y < f(b).
(b) Let S = {x ∈ [a, b] | f(r) < y for all a ≤ r ≤ x}. In short, S is the set of

x-values in the interval where the graph of f hasn’t crossed y yet. Explain
why S has a supremum, and let c = sup(S).

(c) Show that c > a. [ Hint: Apply part (2) of definition of continuous on
[a, b] with ε = y − f(a), and show that a is not an upper bound for S.]

(d) The argument that c < b is similar (so come back to it later if you want).
Thus, c ∈ (a, b), so we know that f is continuous at c.

(e) Suppose that f(c) < y, and obtain a contradiction. [ Hint: Apply contin-
uous at c with ε = y − f(c), and show that c is not an upper bound for
S.]

(f) Suppose that f(c) > y, and obtain a contradiction. [ Hint: Apply contin-
uous at c with ε = f(c)− y, and find a smaller upper bound for S.]

(g) This concludes the case when f(a) ≤ f(b). If f(a) ≥ f(b), what can you
say about g(x) = −f(x)? Can we apply the case we just did?

Proof of Intermediate Value Theorem. Assume f is continuous on [a, b] and
y is a real number such that f(a) ≤ y ≤ f(b) or f(b) ≤ y ≤ f(a). We need
to prove there is a c ∈ [a, b] such that f(c) = y.

Let us assume f(a) ≤ y ≤ f(b) — the other case may be proved in a
very similar manner, or by appealing to this case using the function −f(x)
instead.

If f(a) = y then we may take c = a and if f(b) = y then we may take
c = b. So, we may assume f(a) < y < f(b).

Consider the set

S = {z ∈ R | a ≤ z ≤ b and f(x) < y for all x ∈ [a, z]}
This set is nonempty, since a ∈ S, and it is bounded above, by b. It therefore
has a supremum, which we will call c. I claim f(c) = y.
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Let us first show that c > a. By way of contradiction, suppose c ≤ a.
Since c ≥ a, we must have c = a. Since f is continuous on [a, b], taking
ε = y − f(a) > 0 in the definition, we get that there is a δ > 0 such that
if a ≤ x < a + δ, then f(a) − ε < f(x) < f(a) + ε. In particular, if
a ≤ x ≤ a + δ/2, then f(x) < f(a) + ε = y. This proves that a + δ/2 ∈ S.
But a+ δ/2 > a = c, contrary to the fact that c is the supremum of S. We
conclude that c > a.

Similarly, one may show that c < b — I leave this to you as an exercise.
We now know that a < c < b, and we next prove that f(c) = y by showing

that f(c) > y and f(c) < y are each impossible.
Suppose f(c) > y. Setting ε = f(c) − y and applying the definition of

continuous at c, there is a δ > 0 such that if x is any number such that
c− δ < x < c+ δ then f(c)− ε < f(x) < f(c) + ε. In particular, for any z
such that c− δ < z ≤ c, we have

f(z) > f(c)− ε = y.

In particular, z is not in the set S. It follows that c− δ is an upper bound
of S, contrary to the fact that c is the least upper bound of S.

Suppose f(c) < y. Setting ε = y − f(c) and applying the definition of
continuous at c, there is a δ > 0 such that if c − δ < x < c + δ, then
f(c)− ε < f(x) < f(c) + ε. In particular, if x is any real number such that
c ≤ x ≤ c+ δ/2, then f(x) < f(c) + ε = y. Moreover, if x < c, then x is not
an upper bound of S, and hence there is a z ∈ S such that x < z. If follows
that f(x) ≤ y. So, we have shown that if x ≤ c+ δ/2, then f(x) < y. This
shows that c+ δ/2 ∈ S, contrary to c being an upper bound of S. �
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34. Monday, November 18, 2024 §4.1

Definition 34.1: Let f be a function and r be a real number. We say that f is
differentiable at r if f is defined at r and the limit

lim
x→r

f(x)− f(r)

x− r
exists. In this case, we call the limit the derivative of f at r and write f ′(r) for
this limit.

(1) Use the definition to show that the derivative of f(x) = x is 1 for any r.

Let f(x) = x and consider

lim
x→r

f(x)− f(r)

x− r
= lim

x→r

x− r
x− r

= lim
x→r

1 = 1.

(2) Use the definition to show that the function f(x) = |x| is not differentiable at
x = 0.

Consider

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

|x|
x

= lim
x→0

{
1 if x > 0

−1 if x < 0
.

Letting xn = 1/n, we have that the sequence xn → 0 and f(xn)→ 1; letting
yn = −1/n, we have that the sequence yn → 0 and f(yn)→ −1, so the limit
does not exist.

(3) Prove that if f is differentiable at x = r, then f is continuous at x = r.

Suppose that f is differentiable at r so

f ′(r) = lim
x→r

f(x)− f(r)

x− r
.

Then

lim
x→r

(x− r)f(x)− f(r)

x− r
= (lim

x→r
(x− r))f ′(r) = 0,

so

lim
x→r

f(x)− f(r) = lim
x→r

(x− r)f(x)− f(r)

x− r
= 0,

and hence
lim
x→r

f(x) = f(r).

Thus f is continuous at r.

(4) Prove or disprove the converse of the previous statement.
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We have already seen that f(x) = |x| at r = 0 is a counterexample.

(5) Prove or disprove: The function g(x) =

{
x sin(1/x) if x 6= 0

0 if x = 0
is differentiable

at x = 0.

We compute lim
x→0

g(x)−g(0)
x−0 = lim

x→0

x sin(1/x)
x

= lim
x→0

sin(1/x) does not exist.

This means that g is not differentiable at x = 0.

(6) Prove or disprove: The function h(x) =

{
x2 sin(1/x) if x 6= 0

0 if x = 0
is differentiable

at x = 0.

We compute lim
x→0

h(x)−h(0)
x−0 = lim

x→0

x2 sin(1/x)
x

= lim
x→0

x sin(1/x) = 0. This

means that h is differentiable at 0 and h′(0) = 0.
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35. Wednesday, November 20, 2024 §4.1

Theorem 35.1 (Derivatives and Algebra): Let f, g be functions that are
differentiable at x = r, and c be a real number. Then,

(1) f + g is differentiable at x = r and (f + g)′(r) = f ′(r) + g′(r);
(2) cf is differentiable at x = r and (cf)′(r) = cf ′(r);
(3) fg is differentiable at x = r and (fg)′(r) = f ′(r)g(r) + f(r)g′(r).

(4) If in addition f(r) 6= 0, then 1/f is differentiable at x = r and

(
1

f

)′
(r) =

−f ′(r)
f 2(r)

.

(1) Use the Theorem and an appropriate proof technique to prove that, if f(x) = xn,
then f is differentiable at any value x = r, and f ′(r) = nrn−1.

We proceed by induction on n. For the base case, we use the definition
to show that the derivative of x is 1, which we did earlier. Suppose that
(xk)′ = kxk−1. Then (xk+1)′ = x(xk)′ + x′(xk) = xkxk−1 + xk = (k + 1)xk.
This shows the claim for all n ∈ N by induction.

(2) Use the Theorem plus the previous problem to compute the derivative of f(x) =
5x7 −

√
19 x4.

35x6 − 4
√

19x3.

(3) Use Parts (3) and (4) or the Theorem to deduce the Quotient Rule.

Using the Theorem, we know that if f ′(r) and g′(r) exist and g(r) 6= 0,
then (

f

g

)′
(r) =

(
f · 1

g

)′
(r) = f ′(r)

(
1

g

)
(r) + f(r)

(
1

g

)′
(r)

=
f ′(r)

g(r)
+ f(r)

−g′(r)
g2(r)

=
f ′(r)g(r)− f(r)g′(r)

g2(r)
.

(4) True or False: If f is not differentiable at x = 5 and g is not differentiable at
x = 5, then f + g is not differentiable at x = 5.

(5) True or False: If f is differentiable at x = 5 and g is not differentiable at x = 5,
then fg is not differentiable at x = 5.
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(6) Prove Part (1) of the Theorem.

(7) Prove Part (2) of the Theorem.

(8) Prove Part (3) of the Theorem.

(9) Prove Part (4) of the Theorem.
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