TRUE/FALSE. JUSTIFY AND/OR CORRECT.

- (1) There is an isosceles right triangle with integer side lengths. FALSE
- (2) Every triple of positive integers (a,b,c) with a < b < c < a+b forms the side lengths of a triangle. TRUE
- (3) If (a, b, c) are integers that form the side lengths of a right triangle, then there exists some integer n and some (u, v, w) pairwise coprime integers that form the side lengths of a right triangle with a = nu, b = nv, c = nw. TRUE
- (4) If the GCD of a, b, c is 1, then some pair of the numbers a, b, c is coprime. FALSE
- (5) If a, b are coprime and a divides bc, then a divides c. TRUE
- (6) If $[a]_n \cdot [b]_n = [0]_n$, then $[a]_n = [0]_n$ or $[b]_n = [0]_n$. FALSE
- (7) Every element of \mathbb{Z}_{61} has a multiplicative inverse. FALSE
- (8) 67 is a square in \mathbb{Z}_{187} . (Note that $187 = 11 \cdot 17$.) TRUE
- (9) All but finitely many integers can be written as a difference of two squares. FALSE
- (10) If p is an odd prime, then exactly half of the elements of \mathbb{Z}_p^{\times} are squares. TRUE
- (11) If n is odd, then exactly half of the elements of \mathbb{Z}_p^{\times} are squares. FALSE
- (12) If gcd(a, 60) = 1 and $a^3 \equiv 1 \pmod{60}$, then $a \equiv 1 \pmod{60}$. TRUE
- (13) If $p \ge 5$ is prime, then $p^2 1$ is a multiple of 24. TRUE
- (14) If p is prime, every element of \mathbb{Z}_p has either 0, 1, or 3 cube roots. TRUE
- (15) If n = pq with p, q prime, every element of \mathbb{Z}_n has at most 6 cube roots. FALSE
- (16) There are infinitely many primes p that are congruent to 3 modulo 4. TRUE
- (17) There are infinitely many primes p that are congruent to 2 modulo 4. FALSE
- (18) There are infinitely many primes p that are congruent to 1 modulo 4. TRUE
- (19) There are infinitely many triangular-pentagonal numbers. TRUE
- (20) There is an element of order 52 in \mathbb{Z}_{53}^{\times} . TRUE
- (21) There is an element of order 13 in \mathbb{Z}_{53}^{\times} . TRUE
- (22) There is an element of order 51 in \mathbb{Z}_{52}^{\times} . FALSE
- (23) There is an element of order 24 in \mathbb{Z}_{52}^{\times} . FALSE
- (24) The set of units in $\mathbb{Z}[\sqrt{D}]$ for D a positive nonsquare integer forms a group under multiplication. TRUE
- (25) Given D a positive nonsquare integer, the set of solutions (x,y) to the equation $x^2 Dy^2 = 2$ has a group structure coming from identifying (x,y) with $x + y\sqrt{D}$. FALSE
- (26) The set of positive solutions to any Pell's equation forms a group. FALSE

- (27) Given D a positive nonsquare integer, the group operation on the solutions (x,y) to $x^2 Dy^2 = 1$ has inverse operation $(x,y) \mapsto (-x,y)$. FALSE
- (28) If n is an integer, the number n^2-2 can never have a prime factor of the form p=8k+5. TRUE
- (29) Every \mathbb{Z}_n^{\times} has a primitive root. FALSE
- (30) An element $[a]_p$ cannot both be a primitive root and a quadratic residue. TRUE
- (31) Every element of \mathbb{Z}_{12} is a multiple of [5]. TRUE
- (32) Every element of \mathbb{Z}_{13}^{\times} has a 5th root. TRUE
- (33) If ab=c, and none of a,b,c is a multiple of p then at least one of a,b,c has a square root modulo p. TRUE
- (34) [41] is not an element of \mathbb{Z}_{40} . FALSE
- (35) If $x^2 + 2 = Dy^2$, for some positive integers x, y, D with $D \ge 10$ not a square, then $\frac{x}{y}$ occurs as a convergent in the continued fraction of \sqrt{D} . TRUE
- (36) If p, q are distinct primes, then $a^{(p-1)(q-1)+1} \equiv a \pmod{pq}$ for all integers a. TRUE
- (37) If D is a positive nonsquare integer, the equation $x^2 Dy^2 = -2$ definitely has a solution. FALSE
- (38) If r is an irrational number and $\left|\frac{p}{q} r\right| < \frac{1}{q}$, then $\frac{p}{q}$ appears as a convergent in the continued fraction expansion of r. FALSE
- (39) If r is an irrational number then there are infinitely many rational numbers p/q with $p/q < r < p/q + 1/q^2$. TRUE
- (40) Every number has a finite continued fraction expansion. FALSE
- (41) There is a rational number with denominator less than 100 that is closer to $\pi = [3; 7, 15, 1, 292, 1, \dots]$ than 355/113 is. FALSE
- (42) The group law on an elliptic curve is given by taking two points P, Q on E and setting $P \star Q$ to be the third point on the line between P and Q on E. FALSE
- (43) The origin is the identity in the elliptic curve group. FALSE
- (44) Every point on the y-axis of an elliptic curve has order 2. TRUE
- (45) Every inflection point on a real elliptic curve has order 3. TRUE
- (46) A real elliptic curve \overline{E} can have infinitely many points of order 4. FALSE
- (47) An elliptic curve \overline{E}_p over \mathbb{Z}_p can have more than 2p+1 points. FALSE
- (48) An elliptic curve \overline{E}_p with 26 points (including ∞) can have a point with order 4. FALSE

COMPUTATIONS

- (1) Compute the GCD of 874 and 209, and express it as a linear combination of those numbers. $19 = -5 \cdot 874 + 21 \cdot 209$
- (2) Compute the GCD of 305 and 204, and express it as a linear combination of those numbers. $1 = 101 \cdot 305 151 \cdot 204$
- (3) Find the general integer solution to the equation 874x + 209y = 14.
- (4) Find the general integer solution to the equation 874x + 209y = 95. x = -25 + 11k, y = 105 46k, $k \in \mathbb{Z}$
- (5) Find the multiplicative inverse of $[204]_{305}$, if it exists. $[-151]_{305}$
- (6) Find all solutions in \mathbb{Z}_{874} to [209]z [120] = [13]. [147] + [19]k, $0 \le k < 46$
- (7) Find all solutions in \mathbb{Z}_7 to the equation $x^3 + [2]x = [5]$. x = [2], [3]
- (8) Find all solutions to the system $\begin{cases} x \equiv 3 \pmod{10} \\ x \equiv 5 \pmod{17} \end{cases}$ $73 + 173k, k \in \mathbb{Z}$
- (9) Find all solutions to the system $\begin{cases} x \equiv 3 \pmod{10} \\ x \equiv 4 \pmod{16} \end{cases}$
- (10) Find all square roots of -1 modulo $91. \pm [1], \pm [27]$
- (11) Compute $\phi(6!)$. 192
- (12) Compute $7^{2023} \pmod{5}$. 3 (mod 5)
- (13) Compute $7^{2023} \pmod{200}$. 143 (mod 200)

- (14) Solve $x^{137} \equiv 17 \pmod{667} = 23 \cdot 29$ 191 (mod 667)
- (15) Compute the index/discrete logarithm of [9] with respect to the primitive root [2] in \mathbb{Z}_{11} . 6
- (16) Determine how many primitive roots there are in \mathbb{Z}_{37} . 12
- (17) Find the general solution to $x^2 63y^2 = 1$. $(\pm x_k, y_k), k \in \mathbb{Z}$, where $x_k + y_k \sqrt{63} = (8 + \sqrt{63})^k$.
- (18) Find the general solution to $x^2 55y^2 = 1$. $(\pm x_k, y_k), k \in \mathbb{Z}$, where $x_k + y_k \sqrt{55} = (89 + 12\sqrt{55})^k$.
- (19) Find three positive integer solutions to $x^2 2y^2 = 7$. (3, 1), (13, 9), (75, 53)
- (20) Find the first four convergents (starting with $C_0=0$) in the continued fraction expansion of $\frac{2+\sqrt{2}}{5}$. 0/1, 1/1, 2/3, 13/19
- (21) Evaluate the continued fraction [2; 1, 2, 3]. 30/11
- (22) Compute $(\frac{86}{163})$. -1
- (23) Determine how many roots the quadratic polynomial $x^2 3x + 8$ has modulo 41. 2
- (24) For the points P=(2,4), Q=(0,4) in the real elliptic curve \overline{E} given by $y^2=x^3-4x+16$, compute $P\star Q$, $P\star P$, and $Q\star Q$. (-2,-4), (-3,1), (0,-4)
- (25) Compute $([0], [0]) \star ([1], [2])$ in the elliptic curve \overline{E}_7 given by $y^2 = x^3 + 3x$ over \mathbb{Z}_7 . ([3], [1])
- (26) Compute the order of every point in the elliptic curve \overline{E}_7 given by $y^2 = x^3 + x + [1]$ over \mathbb{Z}_7 . ∞ has order 1 and $([0] \pm [1])$, $([2], \pm [2])$ all have order 5.