True/False. Justify and/or correct.

(1) If (a, b) is a solution of the Pell's equation, then $a+b \sqrt{D}$ is a unit in $\mathbb{Z}[\sqrt{D}]$.
(2) If $a+b \sqrt{D}$ is a unit in $\mathbb{Z}[\sqrt{D}]$, then (a, b) is a solution of the Pell's equation.
(3) The norm function on $\mathbb{Z}[\sqrt{D}]$ satisfies the property $N(\alpha+\beta)=N(\alpha)+N(\beta)$.
(4) For any integer D, the equation $x^{2}-D y^{2}=1$ has infinitely many solutions.
(5) If D is a squarefree integer and m is any integer, then the equation $x^{2}-D y^{2}=m$ has a solution.
(6) If D is a squarefree integer and m is any integer, then the equation $x^{2}-D y^{2}=m$ has either infinitely many solutions or no solutions.
(7) The solutions to any Pell's equation forms a group.
(8) A real number has a finite continued fraction expansion if and only if it is rational.
(9) Every irrational number α can be approximated by infinitely many real numbers $\frac{p}{q}$ with $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}$.
(10) Every irrational number α can be approximated by infinitely many real numbers $\frac{p}{q}$ with $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{3}}$.
(11) The solution set in \mathbb{R}^{2} to any polynomial $y^{2}=x^{3}+a x+b$ forms a group.
(12) There exists an elliptic curve with exactly 9 rational points (not including $\infty)$ that has a rational inflection point.

Computations

(1) Find the inverse of $[56]$ in \mathbb{Z}_{89}.
(2) Compute $\left(\frac{-15}{43}\right)$.
(3) Compute $\left(\frac{37}{113}\right)$.
(4) Find the continued fraction expansion of $\frac{1}{\sqrt{3}}$.
(5) Given that $\sqrt{2}=[1 ; 2,2,2,2, \ldots]$ and without using the decimal expansion of $\sqrt{2}$, determine which rational number with denominator less than 30 most closely approximates $\sqrt{2}$.
(6) Find the first three convergents for the continued fraction of $\sqrt[3]{2}$.
(7) Find the first three positive integer solutions of the equation $x^{2}=7 y^{2}+1$.
(8) Give an expression for all solutions of the Pell's equation $x^{2}-12 x^{2}=1$.
(9) Find the positive integer smallest solution of the equation $x^{2}-45 y^{2}=1$.
(10) For the points $P=(2,2), Q=(0,2)$ in the real elliptic curve \bar{E} given by $y^{2}=x^{3}-4 x+4$, compute $P \star Q$ and $P \star P$.
(11) Compute the order of the point $P=([3],[0])$ in the elliptic curve \bar{E}_{5} given by $y^{2}=x^{3}+x$ over \mathbb{Z}_{5}.
(12) Compute the order of the point $P=([3],[1])$ in the elliptic curve \bar{E}_{5} given by $y^{2}=x^{3}+x+[1]$ over \mathbb{Z}_{5}.

