| TRUE/FALSE. JUSTIFY AND/OR CORRECT. | |---| | (1) If a is coprime to n , then there is a unique integer b such that b is the inverse to a modulo n . | | Formprising the inverses to a modin | | (2) For p prime and $[a] \in \mathbb{Z}_p^{\times}$, we have $[a]$ is a quadratic residue if and only if $[a]^{-1}$ is a quadratic residue. | | (3) If $n \equiv 1 \pmod{4}$ then n is a sum of two squares. $n = 22 + 3 \pmod{4}$ | | (4) For any integers a, n , we have $a^{n-1} \equiv 1 \pmod{n}$. | | F: a=0 n=2 | | (5) If $a > n$, then $[a]_n$ is not an element of \mathbb{Z}_n . | | (6) If p is an odd prime, and a is coprime to p , then $a^{(p-1)/2} \equiv \pm 1 \pmod{p}$. | | (7) If a, b are coprime, the equation $ax + by = n$ has at most one integer solution (x_0, y_0) . | | 10 Tilliponer | | (8) The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . The number [46] is a full point in \mathbb{Z}_{307} . | | (9) If a, b are coprime, the equation $ax + by = n$ has at least one integer solution (x_0, y_0) . | | | | (10) There are infinitely many primes p that are congruent to 4 modulo 6. | | I => peren | (11) If p is an odd prime, then exactly half of the elements of \mathbb{Z}_p^{\times} are quadratic residues. (12) 77 ∈ Z₁₂₀. F: [77] ∈ Z₁₂₀ Find the GCD of 672 and 399. - (2) Find the GCD of 310 and 206, and express this GCD as a linear combination of these numbers. 2=2-310-3,206 - (3) Find the general integer solution to the equation 310x + 206y = 14. (26+103k, 43-1554) - (4) Find all solutions in \mathbb{Z}_{72} to the equation [30]x + [4] = [10]. $\{[5], [7], [24], [53], [65]\}$ - (5) Find all solutions in \mathbb{Z}_6 to the equation $x^3 + [5]x^2 = [2]$. - (6) Find all solutions to the system $$\begin{cases} x \equiv 4 \pmod{10} \\ x \equiv 7 \pmod{17} \end{cases} \Rightarrow +170$$ (7) Find all solutions to the system $$\begin{cases} x \equiv 4 \pmod{10} \\ x \equiv 7 \pmod{16} \end{cases}$$ - (8) Compute 3²⁰²³ (mod 5). - (9) Compute 3²⁰²³ (mod 25). - (10) Compute the last digit of 3^{3³}. - (11) Compute the index/discrete logarithm of [7] with respect to the primitive root [2] in \mathbb{Z}_{11} . - (12) Determine how many primitive roots there are in \mathbb{Z}_{37} . - (13) Compute $(\frac{27}{503})$. (503 is prime.) - (14) Compute $(\frac{107}{173})$. (107 and 173 are prime.) - (15) Determine how many roots the quadratic polynomial $x^2 + [3]x + [13]$ has in \mathbb{Z}_{101} .