True/False. Justify and/or correct.
(1) If a is coprime to n, then there is a unique integer b such that b is the inverse to a modulo n.
(2) For p prime and $[a] \in \mathbb{Z}_{p}^{\times}$, we have $[a]$ is a quadratic residue if and only if $[a]^{-1}$ is a quadratic residue.
(3) If $n \equiv 1(\bmod 4)$ then n is a sum of two squares.
(4) For any integers a, n, we have $a^{n-1} \equiv 1(\bmod n)$.
(5) If $a>n$, then $[a]_{n}$ is not an element of \mathbb{Z}_{n}.
(6) If p is an odd prime, and a is coprime to p, then $a^{(p-1) / 2} \equiv \pm 1(\bmod p)$.
(7) If a, b are coprime, the equation $a x+b y=n$ has at most one integer solution $\left(x_{0}, y_{0}\right)$.
(8) The number [46] is a fifth power in \mathbb{Z}_{307}.
(9) If a, b are coprime, the equation $a x+b y=n$ has at least one integer solution $\left(x_{0}, y_{0}\right)$.
(10) There are infinitely many primes p that are congruent to 4 modulo 6 .
(11) If p is an odd prime, then exactly half of the elements of \mathbb{Z}_{p}^{\times}are quadratic residues.
(12) $77 \in \mathbb{Z}_{120}^{\times}$.
(13) If a, b are coprime and $a b$ is a perfect cube, then a is a perfect cube.
(14) If n is an integer, the number $n^{2}-2$ can never have a prime factor of the form $p=8 k+3$.
(15) Every quadratic over \mathbb{Z}_{p}, for p prime, has either zero or two roots.
(16) The notions "even" and "odd" are well-defined in \mathbb{Z}_{203}.
(17) The notions "even" and "odd" are well-defined in \mathbb{Z}_{204}.
(18) There exist integers m, n, a, b such that $\left\{\begin{array}{l}a \equiv b(\bmod m) \\ a \equiv b(\bmod n)\end{array} \quad\right.$ but $a \not \equiv b(\bmod m n)$.
(19) The number 445 is a sum of three cubes.
(20) If p, q are distinct primes, then $a^{(p-1)(q-1)+1} \equiv a(\bmod p q)$ for all integers a.
(21) All but finitely many numbers are sums of three squares.
(22) For any $g \in \mathbb{Z}_{100}^{\times}$, either g is a primitive root, $g^{20}=[1]$, or $g^{8}=[1]$.
(23) If n is an integer, then at least $2 / 5$ of the numbers between 0 and n are coprime to n.
(24) There exist integers m, n, a, b, c, d, with $m . n$ coprime, such that

$$
\left\{\begin{array} { l l }
{ a \equiv c } & { (\operatorname { m o d } m) } \\
{ a \equiv d } & { (\operatorname { m o d } n) }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
b \equiv c & (\bmod m) \\
b \equiv d & (\bmod n)
\end{array}\right.\right.
$$

but $[a] \neq[b]$ in $\mathbb{Z}_{m n}$.
(1) Find the GCD of 672 and 399.
(2) Find the GCD of 310 and 206, and express this GCD as a linear combination of these numbers.
(3) Find the general integer solution to the equation $310 x+206 y=14$.
(4) Find all solutions in \mathbb{Z}_{72} to the equation $[30] x+[4]=[10]$.
(5) Find all solutions in \mathbb{Z}_{6} to the equation $x^{3}+[5] x^{2}=[2]$.
(6) Find all solutions to the system

$$
\left\{\begin{array}{l}
x \equiv 4 \quad(\bmod 10) \\
x \equiv 7 \quad(\bmod 17)
\end{array}\right.
$$

(7) Find all solutions to the system

$$
\begin{cases}x \equiv 4 & (\bmod 10) \\ x \equiv 7 & (\bmod 16)\end{cases}
$$

(8) Compute $3^{2023}(\bmod 5)$.
(9) Compute $3^{2023}(\bmod 25)$.
(10) Compute the last digit of $3^{3^{3^{3}}}$.
(11) Compute the index/discrete logarithm of [7] with respect to the primitive root $[2]$ in \mathbb{Z}_{11}.
(12) Determine how many primitive roots there are in \mathbb{Z}_{37}.
(13) Compute $\left(\frac{27}{503}\right)$. (503 is prime.)
(14) Compute $\left(\frac{107}{173}\right) \cdot(107$ and 173 are prime.)
(15) Determine how many roots the quadratic polynomial $x^{2}+[3] x+[13]$ has in \mathbb{Z}_{101}.
(16) Find a formula for all of the rational points on the circle $x^{2}+y^{2}=5$.

