Math 845. Exam #1

(1) Definitions/Theorem statements
(a) State the definition of a Pythagorean triple.

A triple of integers (a, b, ¢) is a Pythagorean triple if they form the side lengths
of a right triangle.

OR

A triple of integers (a, b, ¢) is a Pythagorean triple if a® + b? = 2.

(b) State Fermat’s Little Theorem.

If p is a prime and a is not a multiple of p, then a’~' =1 (mod p).

(c) State the definition of a primitive root.

An element of Z* is a primitive root if its order equals ¢(n).

(d) State Euler’s criterion.

For p an odd prime and a coprime to p, (%) = aP~Y/2 (mod p).




(2) Computations.
(a) Find the inverse of [121] in Z3go.

We use the Euclidean algorithm:
369 =3-121+6
121=20-6+1
1=1-121-20-6
=1-121—-20(1-369 —3-121)
=61-121 — 20 - 369.
Thus 61 - 121 =1 (mod 369), so [61] is the inverse.

(b) I computed earlier that 4 - 80 — 11 -29 = 1. (You do not need to check this.) Use this
to find an explicit formula for all integers n that satisfy the congruences

n=2 (mod 29)
n=3 (mod 80)

Note that 4 is an inverse of 80 modulo 29 and that —11 is an inverse of 29 modulo
80. Then a particular solutionisn = 2-4-80+ 3 - (—11) - 29 = —317 and the
general solution is —317 + 29 - 80k = —317 + 2320k, k € Z.




(c) Determine if 83 is a quadratic residue modulo 97. (Both 83 and 97 are primes; you
do not need to check this.)

We apply quadratic reciprocity and its variants:
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so this is a quadratic residue.

(d) Find the smallest nonnegative integer n such that 17°?2 = n (mod 250).

We apply Euler’s theorem. First we compute
©(250) = (2 - 5%) = (5 — 1)5* = 100.
Then 171 = 1 (mod 250) by Euler, so
173202 = 173210042 = 172 = 980 = 39 (mod 250).
So, we get 39.




(3) Proofs.

(a) Without using the Sums of Two Squares Theorem, show there are no integers a, b, c
such that a® + v*> + 1 = (2¢)%.

We consider this equation modulo 4. We know that a? is equivalent to 0 or 1
modulo 4, and likewise with b*> and ¢?. Then since 0 - 22 and 1 - 22 are both
equivalent to 0 modulo 4 and (2¢)?> = 0 (mod 4). Considering the cases for a, b,
the left hand side is either 1, 2, or 3 modulo 4, so there cannot be any solution.




(b) Let p, g be distinct primes and ¢ € Z. Show that [a],, has at most four square
roots in Z,,. (Hint: Show that if b*> = a (mod pq), then b* = a (mod p) and
v> = a (mod q).)

Let [b],, be a square root of [a],,, so b* = a (mod pq). Thus, (pq)|(b* — a), so
p|(b* — a) and ¢|(b* — a), which implies b*> = a (mod p) and b* = a (mod q).
That is, in this case, [b], is a square root of [a], in Z, and [b], is a square root of
la], in Z,. In particular, if [a],, has any square roots, then [a], and [a], both have
at least one square root.

Since p and ¢ are prime, we know that [a], has a square root in Z,, the square
root(s) is/are =£[c|, for some [c|, € Z,; likewise, if |a], has a square root in Z,,
the square root(s) is/are £[d], for some [d], € Z,.

Thus, [b], = £[c], and [b], = £[d],. This means

b=+4c (mod p)
b=+d (mod q)

which is shorthand for at most 4 specific possibilities (choices of sign on ¢ and
d), depending on whether [¢] = [0] or [d] = [0] or not. For each such possibility,

e.g.,
= —c (mod p)
b=d (mod q) 7
the uniqueness portion of the Chinese Remainder Theorem asserts that the values
of b satisfying the congruences form exactly one congruence class modulo pq.
That is, for each choice of signs, there is exactly one x € Z,, satisfying the

congruences. We conclude that there are at most four elements of Z,, that are
square roots of [b],,.




(c) Let p be an odd prime such that p = 1 (mod 3). Show that a € Z has a cube root
(i.e., an element b such that > = a in Z,) if and only if a?~V/3 = [1].

For the forward direction, if a = b%, then aP~1/3 = p3(=D/3 — =1 = [1] by
Fermat’s little Theorem.
For the reverse implication, write a = ¢* for a primitive root g. Then

[1] = alP~V/3 = §-Dk/3

implies that (p— 1)k/3 is a multiple of p— 1, by definition of primitive root. Thus
we can write k = 3¢ for some £. Then a = ¢* = (¢")* is a cube.




Bonus: Characterize all rational numbers 7 such that the circle 2 4 y? = r has a rational point.

Suppose that z = a/b, y = c/d, and r = $ are rational numbers in lowest terms such that

z? + y2 =7, S0
s a® & (ad)* + (be)?

t 2 a2 (bd)?

and

s(bd)? = ((ad)* + (be)*)t.
By sums of two squares, we know that for each prime ¢ = 3 (mod 4), we have that the
multiplicity of ¢ in (ad)? + (bc)? is even. Likewise, the multiplicity of ¢ in (bd)? is even.
This implies that if ¢ divides s, its multiplicity in s is even, or if ¢ divides ¢, its multiplicity
in ¢ 1s even. That means we can write

r = 2ap§1 . _kaq%fl . ql%fe

with p; =1 (mod 4) and ¢; = 3 (mod 4), and a, ¢;, f; € Z.
We claim that every rational number of this form can be written as a sum of two rational
squares. Take

r = 2ap§1 . _kaq%fl . ql?fe
and write = s/t in lowest terms by collecting the positive exponents into s and the

negative exponents into ¢.

By adding redundant factors of 2 and p; to s and ¢ if necessary (but not any additional g;
factors) we can assume that ¢ = w? is a perfect square, and that the multiplicity of each ¢;
in s is still even. Therefore, s = u? + v? is a sum of squares, SO

)0

That is, the circle with radius 7 has a rational point.




