
Math 845. Exam #1

(1) Definitions/Theorem statements
(a) State the definition of a Pythagorean triple.

A triple of integers (a, b, c) is a Pythagorean triple if they form the side lengths
of a right triangle.

OR

A triple of integers (a, b, c) is a Pythagorean triple if a2 + b2 = c2.

(b) State Fermat’s Little Theorem.

If p is a prime and a is not a multiple of p, then ap−1 ≡ 1 (mod p).

(c) State the definition of a primitive root.

An element of Z×n is a primitive root if its order equals ϕ(n).

(d) State Euler’s criterion.

For p an odd prime and a coprime to p,
(
a
p

)
≡ a(p−1)/2 (mod p).



(2) Computations.
(a) Find the inverse of [121] in Z369.

We use the Euclidean algorithm:
369 = 3 · 121 + 6

121 = 20 · 6 + 1

1 = 1 · 121− 20 · 6
= 1 · 121− 20(1 · 369− 3 · 121)
= 61 · 121− 20 · 369.

Thus 61 · 121 ≡ 1 (mod 369), so [61] is the inverse.

(b) I computed earlier that 4 · 80− 11 · 29 = 1. (You do not need to check this.) Use this
to find an explicit formula for all integers n that satisfy the congruences{

n ≡ 2 (mod 29)

n ≡ 3 (mod 80)

Note that 4 is an inverse of 80 modulo 29 and that−11 is an inverse of 29 modulo
80. Then a particular solution is n = 2 · 4 · 80 + 3 · (−11) · 29 = −317 and the
general solution is −317 + 29 · 80k = −317 + 2320k, k ∈ Z.



(c) Determine if 83 is a quadratic residue modulo 97. (Both 83 and 97 are primes; you
do not need to check this.)

We apply quadratic reciprocity and its variants:(
83

97

)
=

(
97

83

)
=

(
14

83

)
=

(
2

83

)(
7

83

)
= −1 · −

(
83

7

)
= −1 · −

(
6

7

)
=

(
6

7

)
=

(
2

7

)(
3

7

)
= 1 · −

(
7

3

)
= −

(
1

3

)
= −1

so this is a quadratic residue.

(d) Find the smallest nonnegative integer n such that 173202 ≡ n (mod 250).

We apply Euler’s theorem. First we compute

ϕ(250) = ϕ(21 · 53) = (5− 1)52 = 100.

Then 17100 ≡ 1 (mod 250) by Euler, so

173202 = 1732·100+2 ≡ 172 ≡ 289 ≡ 39 (mod 250).

So, we get 39.



(3) Proofs.

(a) Without using the Sums of Two Squares Theorem, show there are no integers a, b, c
such that a2 + b2 + 1 = (2c)2.

We consider this equation modulo 4. We know that a2 is equivalent to 0 or 1
modulo 4, and likewise with b2 and c2. Then since 0 · 22 and 1 · 22 are both
equivalent to 0 modulo 4 and (2c)2 ≡ 0 (mod 4). Considering the cases for a, b,
the left hand side is either 1, 2, or 3 modulo 4, so there cannot be any solution.



(b) Let p, q be distinct primes and a ∈ Z. Show that [a]pq has at most four square
roots in Zpq. (Hint: Show that if b2 ≡ a (mod pq), then b2 ≡ a (mod p) and
b2 ≡ a (mod q).)

Let [b]pq be a square root of [a]pq, so b2 ≡ a (mod pq). Thus, (pq)|(b2 − a), so
p|(b2 − a) and q|(b2 − a), which implies b2 ≡ a (mod p) and b2 ≡ a (mod q).
That is, in this case, [b]p is a square root of [a]p in Zp and [b]q is a square root of
[a]q in Zq. In particular, if [a]pq has any square roots, then [a]p and [a]q both have
at least one square root.
Since p and q are prime, we know that [a]p has a square root in Zp, the square
root(s) is/are ±[c]p for some [c]p ∈ Zp; likewise, if [a]q has a square root in Zq,
the square root(s) is/are ±[d]q for some [d]q ∈ Zq.
Thus, [b]p = ±[c]p and [b]q = ±[d]q. This means{

b ≡ ±c (mod p)

b ≡ ±d (mod q)
,

which is shorthand for at most 4 specific possibilities (choices of sign on c and
d), depending on whether [c] = [0] or [d] = [0] or not. For each such possibility,
e.g., {

b ≡ −c (mod p)

b ≡ d (mod q)
,

the uniqueness portion of the Chinese Remainder Theorem asserts that the values
of b satisfying the congruences form exactly one congruence class modulo pq.
That is, for each choice of signs, there is exactly one x ∈ Zpq satisfying the
congruences. We conclude that there are at most four elements of Zpq that are
square roots of [b]pq.



(c) Let p be an odd prime such that p ≡ 1 (mod 3). Show that a ∈ Z×p has a cube root
(i.e., an element b such that b3 = a in Zp) if and only if a(p−1)/3 = [1].

For the forward direction, if a = b3, then a(p−1)/3 = b3(p−1)/3 = bp−1 = [1] by
Fermat’s little Theorem.
For the reverse implication, write a = gk for a primitive root g. Then

[1] = a(p−1)/3 ≡ g(p−1)k/3

implies that (p−1)k/3 is a multiple of p−1, by definition of primitive root. Thus
we can write k = 3` for some `. Then a = g3` = (g`)3 is a cube.



Bonus: Characterize all rational numbers r such that the circle x2+y2 = r has a rational point.

Suppose that x = a/b, y = c/d, and r = s
t are rational numbers in lowest terms such that

x2 + y2 = r, so
s

t
=

a2

b2
+

c2

d2
=

(ad)2 + (bc)2

(bd)2
,

and
s(bd)2 = ((ad)2 + (bc)2)t.

By sums of two squares, we know that for each prime q ≡ 3 (mod 4), we have that the
multiplicity of q in (ad)2 + (bc)2 is even. Likewise, the multiplicity of q in (bd)2 is even.
This implies that if q divides s, its multiplicity in s is even, or if q divides t, its multiplicity
in t is even. That means we can write

r = 2ape11 · · · p
ek
k q

2f1
1 · · · q

2f`
`

with pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4), and a, ei, fj ∈ Z.
We claim that every rational number of this form can be written as a sum of two rational

squares. Take
r = 2ape11 · · · p

ek
k q

2f1
1 · · · q

2f`
`

and write r = s/t in lowest terms by collecting the positive exponents into s and the
negative exponents into t.

By adding redundant factors of 2 and pi to s and t if necessary (but not any additional qj
factors) we can assume that t = w2 is a perfect square, and that the multiplicity of each qj
in s is still even. Therefore, s = u2 + v2 is a sum of squares, so

s

t
=
( u
w

)2
+
( v
w

)2
.

That is, the circle with radius r has a rational point.


