Math 845. Exam \#1

(1) Definitions/Theorem statements
(a) State the definition of a Pythagorean triple.

A triple of integers (a, b, c) is a Pythagorean triple if they form the side lengths of a right triangle.

OR
A triple of integers (a, b, c) is a Pythagorean triple if $a^{2}+b^{2}=c^{2}$.
(b) State Fermat's Little Theorem.

If p is a prime and a is not a multiple of p, then $a^{p-1} \equiv 1(\bmod p)$.
(c) State the definition of a primitive root.

An element of \mathbb{Z}_{n}^{\times}is a primitive root if its order equals $\varphi(n)$.
(d) State Euler's criterion.

For p an odd prime and a coprime to $p,\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$.
(2) Computations.
(a) Find the inverse of $[121]$ in \mathbb{Z}_{369}.

We use the Euclidean algorithm:

$$
\begin{aligned}
369 & =3 \cdot 121+6 \\
121 & =20 \cdot 6+1 \\
1 & =1 \cdot 121-20 \cdot 6 \\
& =1 \cdot 121-20(1 \cdot 369-3 \cdot 121) \\
& =61 \cdot 121-20 \cdot 369 .
\end{aligned}
$$

Thus $61 \cdot 121 \equiv 1(\bmod 369)$, so $[61]$ is the inverse.
(b) I computed earlier that $4 \cdot 80-11 \cdot 29=1$. (You do not need to check this.) Use this to find an explicit formula for all integers n that satisfy the congruences

$$
\begin{cases}n \equiv 2 & (\bmod 29) \\ n \equiv 3 & (\bmod 80)\end{cases}
$$

Note that 4 is an inverse of 80 modulo 29 and that -11 is an inverse of 29 modulo 80. Then a particular solution is $n=2 \cdot 4 \cdot 80+3 \cdot(-11) \cdot 29=-317$ and the general solution is $-317+29 \cdot 80 k=-317+2320 k, k \in \mathbb{Z}$.
(c) Determine if 83 is a quadratic residue modulo 97. (Both 83 and 97 are primes; you do not need to check this.)

We apply quadratic reciprocity and its variants:

$$
\begin{aligned}
\left(\frac{83}{97}\right) & =\left(\frac{97}{83}\right)=\left(\frac{14}{83}\right)=\left(\frac{2}{83}\right)\left(\frac{7}{83}\right)=-1 \cdot-\left(\frac{83}{7}\right)=-1 \cdot-\left(\frac{6}{7}\right) \\
& =\left(\frac{6}{7}\right)=\left(\frac{2}{7}\right)\left(\frac{3}{7}\right)=1 \cdot-\left(\frac{7}{3}\right)=-\left(\frac{1}{3}\right)=-1
\end{aligned}
$$

so this is a quadratic residue.
(d) Find the smallest nonnegative integer n such that $17^{3202} \equiv n(\bmod 250)$.

We apply Euler's theorem. First we compute

$$
\varphi(250)=\varphi\left(2^{1} \cdot 5^{3}\right)=(5-1) 5^{2}=100
$$

Then $17^{100} \equiv 1(\bmod 250)$ by Euler, so

$$
17^{3202}=17^{32 \cdot 100+2} \equiv 17^{2} \equiv 289 \equiv 39 \quad(\bmod 250)
$$

So, we get 39 .
(3) Proofs.
(a) Without using the Sums of Two Squares Theorem, show there are no integers a, b, c such that $a^{2}+b^{2}+1=(2 c)^{2}$.

We consider this equation modulo 4 . We know that a^{2} is equivalent to 0 or 1 modulo 4 , and likewise with b^{2} and c^{2}. Then since $0 \cdot 2^{2}$ and $1 \cdot 2^{2}$ are both equivalent to 0 modulo 4 and $(2 c)^{2} \equiv 0(\bmod 4)$. Considering the cases for a, b, the left hand side is either 1,2 , or 3 modulo 4 , so there cannot be any solution.
(b) Let p, q be distinct primes and $a \in \mathbb{Z}$. Show that $[a]_{p q}$ has at most four square roots in $\mathbb{Z}_{p q}$. (Hint: Show that if $b^{2} \equiv a(\bmod p q)$, then $b^{2} \equiv a(\bmod p)$ and $\left.b^{2} \equiv a(\bmod q).\right)$

Let $[b]_{p q}$ be a square root of $[a]_{p q}$, so $b^{2} \equiv a(\bmod p q)$. Thus, $(p q) \mid\left(b^{2}-a\right)$, so $p \mid\left(b^{2}-a\right)$ and $q \mid\left(b^{2}-a\right)$, which implies $b^{2} \equiv a(\bmod p)$ and $b^{2} \equiv a(\bmod q)$. That is, in this case, $[b]_{p}$ is a square root of $[a]_{p}$ in \mathbb{Z}_{p} and $[b]_{q}$ is a square root of $[a]_{q}$ in \mathbb{Z}_{q}. In particular, if $[a]_{p q}$ has any square roots, then $[a]_{p}$ and $[a]_{q}$ both have at least one square root.
Since p and q are prime, we know that $[a]_{p}$ has a square root in \mathbb{Z}_{p}, the square $\operatorname{root}(\mathrm{s})$ is/are $\pm[c]_{p}$ for some $[c]_{p} \in \mathbb{Z}_{p}$; likewise, if $[a]_{q}$ has a square root in \mathbb{Z}_{q}, the square $\operatorname{root}(\mathrm{s})$ is/are $\pm[d]_{q}$ for some $[d]_{q} \in \mathbb{Z}_{q}$.
Thus, $[b]_{p}= \pm[c]_{p}$ and $[b]_{q}= \pm[d]_{q}$. This means

$$
\left\{\begin{array}{l}
b \equiv \pm c \quad(\bmod p) \\
b \equiv \pm d \quad(\bmod q)
\end{array}\right.
$$

which is shorthand for at most 4 specific possibilities (choices of sign on c and d), depending on whether $[c]=[0]$ or $[d]=[0]$ or not. For each such possibility, e.g.,

$$
\left\{\begin{array}{l}
b \equiv-c \quad(\bmod p) \\
b \equiv d \quad(\bmod q)
\end{array}\right.
$$

the uniqueness portion of the Chinese Remainder Theorem asserts that the values of b satisfying the congruences form exactly one congruence class modulo $p q$. That is, for each choice of signs, there is exactly one $x \in \mathbb{Z}_{p q}$ satisfying the congruences. We conclude that there are at most four elements of $\mathbb{Z}_{p q}$ that are square roots of $[b]_{p q}$.
(c) Let p be an odd prime such that $p \equiv 1(\bmod 3)$. Show that $a \in \mathbb{Z}_{p}^{\times}$has a cube root (i.e., an element b such that $b^{3}=a$ in \mathbb{Z}_{p}) if and only if $a^{(p-1) / 3}=[1]$.

For the forward direction, if $a=b^{3}$, then $a^{(p-1) / 3}=b^{3(p-1) / 3}=b^{p-1}=[1]$ by Fermat's little Theorem.
For the reverse implication, write $a=g^{k}$ for a primitive root g. Then

$$
[1]=a^{(p-1) / 3} \equiv g^{(p-1) k / 3}
$$

implies that $(p-1) k / 3$ is a multiple of $p-1$, by definition of primitive root. Thus we can write $k=3 \ell$ for some ℓ. Then $a=g^{3 \ell}=\left(g^{\ell}\right)^{3}$ is a cube.

Bonus: Characterize all rational numbers r such that the circle $x^{2}+y^{2}=r$ has a rational point.
Suppose that $x=a / b, y=c / d$, and $r=\frac{s}{t}$ are rational numbers in lowest terms such that $x^{2}+y^{2}=r$, so

$$
\frac{s}{t}=\frac{a^{2}}{b^{2}}+\frac{c^{2}}{d^{2}}=\frac{(a d)^{2}+(b c)^{2}}{(b d)^{2}}
$$

and

$$
s(b d)^{2}=\left((a d)^{2}+(b c)^{2}\right) t
$$

By sums of two squares, we know that for each prime $q \equiv 3(\bmod 4)$, we have that the multiplicity of q in $(a d)^{2}+(b c)^{2}$ is even. Likewise, the multiplicity of q in $(b d)^{2}$ is even. This implies that if q divides s, its multiplicity in s is even, or if q divides t, its multiplicity in t is even. That means we can write

$$
r=2^{a} p_{1}^{e_{1}} \cdots p_{k}^{e_{k}} q_{1}^{2 f_{1}} \cdots q_{\ell}^{2 f_{\ell}}
$$

with $p_{i} \equiv 1(\bmod 4)$ and $q_{j} \equiv 3(\bmod 4)$, and $a, e_{i}, f_{j} \in \mathbb{Z}$.
We claim that every rational number of this form can be written as a sum of two rational squares. Take

$$
r=2^{a} p_{1}^{e_{1}} \cdots p_{k}^{e_{k}} q_{1}^{2 f_{1}} \cdots q_{\ell}^{2 f_{\ell}}
$$

and write $r=s / t$ in lowest terms by collecting the positive exponents into s and the negative exponents into t.
By adding redundant factors of 2 and p_{i} to s and t if necessary (but not any additional q_{j} factors) we can assume that $t=w^{2}$ is a perfect square, and that the multiplicity of each q_{j} in s is still even. Therefore, $s=u^{2}+v^{2}$ is a sum of squares, so

$$
\frac{s}{t}=\left(\frac{u}{w}\right)^{2}+\left(\frac{v}{w}\right)^{2}
$$

That is, the circle with radius r has a rational point.

