Math 845. Exam \#1

(1) Definitions/Theorem statements
(a) State the definition of a Pythagorean triple.
(b) State Fermat's Little Theorem.
(c) State the definition of a primitive root.
(d) State Euler's criterion.
(2) Computations.
(a) Find the inverse of $[121]$ in \mathbb{Z}_{369}.
(b) I computed earlier that $4 \cdot 80-11 \cdot 29=1$. (You do not need to check this.) Use this to find an explicit formula for all integers n that satisfy the congruences

$$
\begin{cases}n \equiv 2 & (\bmod 29) \\ n \equiv 3 & (\bmod 80)\end{cases}
$$

(c) Determine if 83 is a quadratic residue modulo 97 . (Both 83 and 97 are primes; you do not need to check this.)
(d) Find the smallest nonnegative integer n such that $17^{3202} \equiv n(\bmod 250)$.
(3) Proofs.
(a) Without using the Sums of Two Squares Theorem, show there are no integers a, b, c such that $a^{2}+b^{2}+1=(2 c)^{2}$.
(b) Let p, q be distinct primes and $a \in \mathbb{Z}$. Show that $[a]_{p q}$ has at most four square roots in $\mathbb{Z}_{p q}$. (Hint: Show that if $b^{2} \equiv a(\bmod p q)$, then $b^{2} \equiv a(\bmod p)$ and $\left.b^{2} \equiv a(\bmod q).\right)$
(c) Let p be an odd prime such that $p \equiv 1(\bmod 3)$. Show that $a \in \mathbb{Z}_{p}^{\times}$has a cube root (i.e., an element b such that $b^{3}=a$ in \mathbb{Z}_{p}) if and only if $a^{(p-1) / 3}=[1]$.

Bonus: Characterize all rational numbers r such that the circle $x^{2}+y^{2}=r$ has a rational point.

