Math 445. Exam #1

(1) Definitions/Theorem statements

(a) State the definition of a **Pythagorean triple**.

A triple of integers (a, b, c) is a Pythagorean triple if they form the side lengths of a right triangle.

OR

A triple of integers (a, b, c) is a Pythagorean triple if $a^2 + b^2 = c^2$.

(b) State Fermat's Little Theorem.

If p is a prime and a is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

(c) State the definition of a **primitive root**.

An element of \mathbb{Z}_n^{\times} is a primitive root if its order equals $\varphi(n)$.

(d) State Euler's criterion.

For p an odd prime and a coprime to p, $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$.

(2) Computations.

(a) • Use the definition of congruence to verify that

$$\begin{cases} 54 \equiv 10 \pmod{11} \\ 54 \equiv 3 \pmod{17} \end{cases}$$

$$54 - 10 = 44 = 4 \cdot 11$$
 $54 - 3 = 51 = 3 \cdot 17.$

• Explicitly describe the set of integers x that satisfies the two congruences

 $\begin{cases} x \equiv 10 \pmod{11} \\ x \equiv 3 \pmod{17} \end{cases}$

 $\{54 + 187k \mid k \in \mathbb{Z}\}\$

(b) Find the inverse of [121] in \mathbb{Z}_{369} .

We use the Euclidean algorithm: $369 = 3 \cdot 121 + 6$ $121 = 20 \cdot 6 + 1$ $1 = 1 \cdot 121 - 20 \cdot 6$ $= 1 \cdot 121 - 20(1 \cdot 369 - 3 \cdot 121)$ $= 61 \cdot 121 - 20 \cdot 369.$ Thus $61 \cdot 121 \equiv 1 \pmod{369}$, so [61] is the inverse. (c) Determine if 83 is a quadratic residue modulo 97. (Both 83 and 97 are primes; you do not need to check this.)

We apply quadratic reciprocity and its variants:

$$\begin{pmatrix} \frac{83}{97} \end{pmatrix} = \begin{pmatrix} \frac{97}{83} \end{pmatrix} = \begin{pmatrix} \frac{14}{83} \end{pmatrix} = \begin{pmatrix} \frac{2}{83} \end{pmatrix} \begin{pmatrix} \frac{7}{83} \end{pmatrix} = -1 \cdot -\begin{pmatrix} \frac{83}{7} \end{pmatrix} = -1 \cdot -\begin{pmatrix} \frac{6}{7} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{6}{7} \end{pmatrix} = \begin{pmatrix} \frac{2}{7} \end{pmatrix} \begin{pmatrix} \frac{3}{7} \end{pmatrix} = 1 \cdot -\begin{pmatrix} \frac{7}{3} \end{pmatrix} = -\begin{pmatrix} \frac{1}{3} \end{pmatrix} = -1$$
so this is a quadratic residue.

(d) Find the smallest nonnegative integer n such that $17^{3202} \equiv n \pmod{250}$.

We apply Euler's theorem. First we compute $\varphi(250) = \varphi(2^1 \cdot 5^3) = (5-1)5^2 = 100.$ Then $17^{100} \equiv 1 \pmod{250}$ by Euler, so $17^{3202} = 17^{32 \cdot 100 + 2} \equiv 17^2 \equiv 289 \equiv 39 \pmod{250}.$ So, we get 39.

(3) Proofs.

(a) Without using the Sums of Two Squares Theorem, show there are no integers a, b, c such that $a^2 + b^2 + 1 = (2c)^2$.

We consider this equation modulo 4. We know that a^2 is equivalent to 0 or 1 modulo 4, and likewise with b^2 and c^2 . Then since $0 \cdot 2^2$ and $1 \cdot 2^2$ are both equivalent to 0 modulo 4 and $(2c)^2 \equiv 0 \pmod{4}$. Considering the cases for a, b, the left hand side is either 1, 2, or 3 modulo 4, so there cannot be any solution.

(b) Let p, q be distinct primes and $a \in \mathbb{Z}$. Show that $[a]_{pq}$ has at most four square roots in \mathbb{Z}_{pq} . (Hint: Show that if $b^2 \equiv a \pmod{pq}$, then $b^2 \equiv a \pmod{p}$ and $b^2 \equiv a \pmod{q}$.)

Let $[b]_{pq}$ be a square root of $[a]_{pq}$, so $b^2 \equiv a \pmod{pq}$. Thus, $(pq)|(b^2 - a)$, so $p|(b^2 - a)$ and $q|(b^2 - a)$, which implies $b^2 \equiv a \pmod{p}$ and $b^2 \equiv a \pmod{q}$. That is, in this case, $[b]_p$ is a square root of $[a]_p$ in \mathbb{Z}_p and $[b]_q$ is a square root of $[a]_q$ in \mathbb{Z}_q . In particular, if $[a]_{pq}$ has any square roots, then $[a]_p$ and $[a]_q$ both have at least one square root.

Since p and q are prime, we know that $[a]_p$ has a square root in \mathbb{Z}_p , the square root(s) is/are $\pm [c]_p$ for some $[c]_p \in \mathbb{Z}_p$; likewise, if $[a]_q$ has a square root in \mathbb{Z}_q , the square root(s) is/are $\pm [d]_q$ for some $[d]_q \in \mathbb{Z}_q$. Thus, $[b]_p = \pm [c]_p$ and $[b]_q = \pm [d]_q$. This means

$$\begin{cases} b \equiv \pm c \pmod{p} \\ b \equiv \pm d \pmod{q} \end{cases}$$

which is shorthand for at most 4 specific possibilities (choices of sign on c and d), depending on whether [c] = [0] or [d] = [0] or not. For each such possibility, e.g.,

$$\begin{cases} b \equiv -c \pmod{p} \\ b \equiv d \pmod{q} \end{cases}$$

the uniqueness portion of the Chinese Remainder Theorem asserts that the values of b satisfying the congruences form exactly one congruence class modulo pq. That is, for each choice of signs, there is exactly one $x \in \mathbb{Z}_{pq}$ satisfying the congruences. We conclude that there are at most four elements of \mathbb{Z}_{pq} that are square roots of $[b]_{pq}$. (c) Let p be an odd prime such that $p \equiv 2 \pmod{3}$. Show that every element of \mathbb{Z}_p^{\times} has a cube root; i.e., if $a \in \mathbb{Z}_p^{\times}$, there is some $b \in \mathbb{Z}_p^{\times}$ such that $b^3 = a$.

Let g be a primitive root and write $a = g^k$. We seek an element $b = g^\ell$ such that $b^3 = a$; i.e., $g^{3\ell} = g^k$. Since $g^{p-1} = [1]$ in \mathbb{Z}_p , we have $g^{3\ell} = g^k$ whenever $3\ell \equiv k \pmod{p-1}$. But, since $p \equiv 2 \pmod{3}$, we also have $p-1 \equiv 1 \pmod{3}$, which implies that 3 and p-1 are coprime; i.e., 3 is a unit modulo p-1, so

 $3\ell \equiv k \pmod{p-1}$

has a solution ℓ ; this yields the cube root $b = g^{\ell}$ that we seek.

Bonus: Let p be an odd prime such that $p \equiv 1 \pmod{3}$. Show that $a \in \mathbb{Z}_p^{\times}$ has a cube root if and only if $a^{(p-1)/3} = [1]$.

For the forward direction, if $a = b^3$, then $a^{(p-1)/3} = b^{3(p-1)/3} = b^{p-1} = [1]$ by Fermat's little Theorem.

For the reverse implication, write $a = g^k$ for a primitive root g. Then

$$[1] = a^{(p-1)/3} \equiv g^{(p-1)k/3}$$

implies that (p-1)k/3 is a multiple of p-1, by definition of primitive root. Thus we can write $k = 3\ell$ for some ℓ . Then $a = g^{3\ell} = (g^{\ell})^3$ is a cube.

Bonus: Characterize all rational numbers r such that the circle $x^2 + y^2 = r$ has a rational point.

Suppose that x = a/b, y = c/d, and $r = \frac{s}{t}$ are rational numbers in lowest terms such that $x^2 + y^2 = r$, so

$$\frac{s}{t} = \frac{a^2}{b^2} + \frac{c^2}{d^2} = \frac{(ad)^2 + (bc)^2}{(bd)^2},$$

and

$$s(bd)^2 = ((ad)^2 + (bc)^2)t.$$

By sums of two squares, we know that for each prime $q \equiv 3 \pmod{4}$, we have that the multiplicity of q in $(ad)^2 + (bc)^2$ is even. Likewise, the multiplicity of q in $(bd)^2$ is even. This implies that if q divides s, its multiplicity in s is even, or if q divides t, its multiplicity in t is even. That means we can write

$$r = 2^a p_1^{e_1} \cdots p_k^{e_k} q_1^{2f_1} \cdots q_\ell^{2f_\ell}$$

with $p_i \equiv 1 \pmod{4}$ and $q_j \equiv 3 \pmod{4}$, and $a, e_i, f_j \in \mathbb{Z}$.

We claim that every rational number of this form can be written as a sum of two rational squares. Take

$$r = 2^a p_1^{e_1} \cdots p_k^{e_k} q_1^{2f_1} \cdots q_\ell^{2f_\ell}$$

and write r = s/t in lowest terms by collecting the positive exponents into s and the negative exponents into t.

By adding redundant factors of 2 and p_i to s and t if necessary (but not any additional q_j factors) we can assume that $t = w^2$ is a perfect square, and that the multiplicity of each q_j in s is still even. Therefore, $s = u^2 + v^2$ is a sum of squares, so

$$\frac{s}{t} = \left(\frac{u}{w}\right)^2 + \left(\frac{v}{w}\right)^2.$$

That is, the circle with radius r has a rational point.