Math 445. Exam \#1

(1) Definitions/Theorem statements
(a) State the definition of a Pythagorean triple.
(b) State Fermat's Little Theorem.
(c) State the definition of a primitive root.
(d) State Euler's criterion.
(2) Computations.
(a) - Use the definition of congruence to verify that

$$
\left\{\begin{array}{l}
54 \equiv 10 \quad(\bmod 11) \\
54 \equiv 3 \quad(\bmod 17)
\end{array}\right.
$$

- Explicitly describe the set of integers x that satisfies the two congruences

$$
\left\{\begin{array}{l}
x \equiv 10 \quad(\bmod 11) \\
x \equiv 3 \quad(\bmod 17)
\end{array}\right.
$$

(b) Find the inverse of [121] in \mathbb{Z}_{369}.
(c) Determine if 83 is a quadratic residue modulo 97 . (Both 83 and 97 are primes; you do not need to check this.)
(d) Find the smallest nonnegative integer n such that $17^{3202} \equiv n(\bmod 250)$.
(3) Proofs.
(a) Without using the Sums of Two Squares Theorem, show there are no integers a, b, c such that $a^{2}+b^{2}+1=(2 c)^{2}$.
(b) Let p, q be distinct primes and $a \in \mathbb{Z}$. Show that $[a]_{p q}$ has at most four square roots in $\mathbb{Z}_{p q}$. (Hint: Show that if $b^{2} \equiv a(\bmod p q)$, then $b^{2} \equiv a(\bmod p)$ and $\left.b^{2} \equiv a(\bmod q).\right)$
(c) Let p be an odd prime such that $p \equiv 2(\bmod 3)$. Show that every element of \mathbb{Z}_{p}^{\times}has a cube root; i.e., if $a \in \mathbb{Z}_{p}^{\times}$, there is some $b \in \mathbb{Z}_{p}^{\times}$such that $b^{3}=a$.

Bonus: Let p be an odd prime such that $p \equiv 1(\bmod 3)$. Show that $a \in \mathbb{Z}_{p}^{\times}$has a cube root if and only if $a^{(p-1) / 3}=[1]$.

Bonus: Characterize all rational numbers r such that the circle $x^{2}+y^{2}=r$ has a rational point.

