
WORKSHEET #1

Definition 1. A triple (a, b, c) of natural numbers is a Pythagoran triple if they form the side lengths of a
right triangle, where c is the length of the hypotenuse.

Theorem 2 (Fundamental Theorem of Arithmetic). Every natural number n ≥ 1 can be written as a product
of prime numbers:

n = pe11 p
e2
2 · · · p

ek
k .

This expression is unique up to reordering. �

Definition 3. We call the number ei the multiplicity of the prime pi in the prime factorization of

n = pe11 p
e2
2 · · · p

ek
k .

Definition 4. Letm,n be integers andK ≥ 1 be a natural number. We say thatm is congruent to nmodulo
K, written as m ≡ n (mod K), if m− n is a multiple of K.

Theorem 5. Let n be an integer and K ≥ 1 a natural number. Then n is congruent to exactly one nonnneg-
ative integer between 0 and K − 1: this number is the “remainder” when you divide n by K. �

Proposition 6. Let m,m′, n, n′ and K be natural numbers. Suppose that

m ≡ m′ (mod K) and n ≡ n′ (mod K).

Then
m+ n ≡ m′ + n′ (mod K) and mn ≡ m′n′ (mod K). �

Definition 7. A triple (a, b, c) of natural numbers is a primitive Pythagoran triple (PPT) if a2 + b2 = c2,
and there is no common factor of a, b, c greater than 1; equivalently, a, b, c have no common prime factor.

Theorem 8. The set of primitive Pythagorean triples (a, b, c) with a odd is given by the formula

a = st, b =
s2 − t2

2
, c =

s2 + t2

2
,

where s > t ≥ 1 are odd integers with no common factors.

Theorem 9. The set of points on the unit circle x2 + y2 = 1 with positive rational coordinates is given by
the formula

(x, y) =

(
2v

v2 + 1
,
v2 − 1

v2 + 1

)
where v ranges through rational numbers greater than one.
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Definition 10. The greatest common divisor of two integers a and b, denoted gcd(a, b), is the largest integer
that divides a and b.

Definition 11. Two integers a and b are coprime if gcd(a, b) = 1.

Theorem 12. The Euclidean algorithm terminates and outputs the correct value of gcd(a, b).

Definition 13. An expression of the form ra+ sb with r, s ∈ Z is a linear combination of a and b.

Corollary 14. If a, b are integers, then gcd(a, b) can be realized as a linear combination of a and b. Con-
cretely, we can use the Euclidean algorithm to do this.



Theorem 15. Let a, b, c be integers. The equation

ax+ by = c

has an integer solution if and only if c is divisible by d := gcd(a, b). If this is the case, there are infinitely
many solutions. If (x0, y0) is a one particular solution, then the general solution is of the form

x = x0 − (b/d)n, y = y0 + (a/d)n

as n ranges through all integers.
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Lemma 16. Lat a, b, c be integers. If a and b are coprime, and a divides bc, then a divides c.

WORKSHEET #3

Definition 17. A congruence class modulo K is a set of the form

[a] := {n ∈ Z | n ≡ a (mod K)}
for some a ∈ Z.

Definition 18. A representative for a congruence class is an element of the congruence class.

Proposition 19. Given K > 0, the set of integers Z is the disjoint union of K congruence classes:

Z = [0] t [1] t · · · t [K − 1].

Definition 20. The ring ZK is the set of congruence classes modulo K:

{[0], [1], . . . , [K − 1]}
equipped with the operations

[a] + [b] = [a+ b] and [a][b] = [ab].

Definition 21. We say that a number a is a unit modulo K if there is an integer solution x to ax ≡ 1
(mod K), and we say that such a number x is an inverse modulo K to a.

Definition 22. We say that a congruence class [a] is a unit in ZK if there is a congruence class x ∈ ZK
such that [a]x = [1], and we say that such a class x is an inverse to [a] in ZK .

Theorem 23. Let a and n be integers, with n positive. Then a is a unit modulo n if and only if a and n are
coprime.

Theorem 24 (Chinese Remainder Theorem). Given m1, . . . ,mk > 0 integers such that mi and mj are
coprime for each i 6= j, and a1, . . . , ak ∈ Z, the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...
...

x ≡ ak (mod mk)

has a solution x ∈ Z. Moreover, the set of solutions forms a unique congruence class modulo m1m2 · · ·mk.
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Lemma 25. Lat a, b, c be integers. If a and b are coprime, a divides c, and b divides c, then a divides bc.

Definition 26. Given integers a1, . . . , am, the greatest common divisor of a1, . . . , am is the largest integer
that divides all of them.

Theorem 27. Let a, b, n be integers, with n > 0. Then [a]x = [b] has a solution x in Zn if and only if
gcd(a, n) divides b. In this case, the number of distinct solutions is exactly gcd(a, n).
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Definition 28. A group is a set G equipped with a product operation

G×G→ G (g, h) 7→ gh

and an identity element 1 ∈ G such that
• the product is associative: (gh)k = g(hk) for all g, h, k ∈ G,
• g1 = 1g = g for all g ∈ G, and
• for every g ∈ G, there is an inverse element g−1 ∈ G such that gg−1 = g−1g = 1.

Definition 29. A group is abelian if the product is commutative: gh = hg for all g, h ∈ G.

Definition 30. A finite group is a group G that is a finite set.

Definition 31. Let G be a group and g ∈ G. The order of g is the smallest positive integer n such that
gn = e, if some such n exists, and∞ if no such integer exists.

Theorem 32 (Lagrange’s Theorem). Let G be a finite group and g ∈ G. Then the order of g is finite and
divides the cardinality of the group G.

Theorem 33 (Fermat’s Little Theorem). Let p be a prime number and a an integer. If p does not divide a,
then

ap−1 ≡ 1 (mod p).

Definition 34. Let n be a positive integer. We define ϕ(n) to be the number of elements of Z×n . We call this
Euler’s phi function.

Proposition 35. Euler’s phi function satisfies the following properties.
(1) If p is a prime and n is a positive integer, then ϕ(pn) = pn−1(p− 1).
(2) If m,n are coprime positive integers, then ϕ(mn) = ϕ(m)ϕ(n).

Theorem 36 (Euler’s Theorem). Let a, n be coprime integers, with n positive. Then

aϕ(n) ≡ 1 (mod n).
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Proposition 37. Let p be a prime. Let p(x) be a polynomial of degree d with coefficients in Zp. Then p(x)
has at most d roots in Zp. �

Lemma 38. If G is a group, g ∈ G, and n a positive integer such that gn = 1, then the order of g divides n.

Definition 39. Let n be a positive integer. An element x ∈ Z×n is a primitive root if the order of x in Z×n
equals φ(n) (the cardinality of Z×n ).

Theorem 40. Let p be a prime number. Then there exists a primitive root in Z×p .

Definition 41. If [a] is a primitive root in Zp, the function

Z×p → Zp−1 [b] 7→ [m] such that [b] = [a]m

is called the discrete logarithm or index of Z×p with base [a].

Lemma 42. Let p be a prime and [a] a primitive root in Zp. The corresponding discrete logarithm function
I : Z×p → Zp−1 satisfies the property

I(xy) = I(x) + I(y) and I(xn) = [n]I(x)

for x, y ∈ Z×p and n ∈ N.



Proposition 43. Let n be a positive integer. Then
∑
d |n

ϕ(d) = n.

Theorem 44. Let p be a prime. Suppose that there are n distinct solutions to xn = 1 in Zp. Then Z×p has
exactly ϕ(n) elements of order n.
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Definition 45. We say that an element x ∈ Zn is a square or a quadratic residue if there is some y ∈ Zn
such that y2 = x, and in this case, we call y a square root of x.

Definition 46. Let p be an odd prime. For r ∈ Z not a multiple of p we define the Legendre symbol of r
with respect to p as (

r

p

)
=

{
1 if [r] is a square in Zp,
−1 if [r] is a not square in Zp.

Theorem 47 (Euler’s Criterion). For p an odd prime and r ∈ Z not a multiple of p, we have(
r

p

)
≡ r(p−1)/2 (mod p).

Theorem 48 (Quadratic Reciprocity part −1). If p is odd, then(
−1
p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)
.

Proposition 49. Let p be an odd prime and a, b integers not divisible by p. Then

(1) a ≡ b (mod p) implies that
(
a

p

)
=

(
b

p

)
.

(2)
(
ab

p

)
=

(
a

p

)(
b

p

)
.

(3)
(
a2

p

)
= 1.
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Theorem 50. If p is an odd prime and n > 0, then Zpn has a primitive root.
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Theorem 51 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then(
p

q

)
=

(
q

p

)
if either p ≡ 1 (mod 4) or q ≡ 1 (mod 4),(

p

q

)
= −

(
q

p

)
if both p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

Theorem 52 (Quadratic Reciprocity part 2). Let p be an odd prime. Then(
2

p

)
= 1 if p ≡ ±1 (mod 8),(

2

p

)
= −1 if p ≡ ±3 (mod 8).



Lemma 53 (Gauss’ Lemma). Let p be an odd prime and set p′ = p−1
2

. Note that every integer coprime to p
is congruent modulo p to a unique integer in the set S = {±1,±2, · · · ,±p′}.

Let a be an integer coprime to p. Consider the sequence

a, 2a, 3a, . . . , p′a

and replace each element in the sequence with element of S that is congruent with modulo p to get a list L
of p′-many elements of S.

Then
(
a

p

)
= (−1)ν , where ν is the number of negative integers in L.

Lemma 54. Let p and q be two coprime odd positive integers. Then
p−1
2∑

k=1

⌊
kq

p

⌋
+

q−1
2∑
`=1

⌊
`p

q

⌋
=
p− 1

2
· q − 1

2
.
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Theorem 55 (Euclid). There are infinitely many primes.

Proposition 56. For each of the following conditions, there are infinitely many primes p:
• p ≡ 1 (mod 3)
• p ≡ 2 (mod 3)
• p ≡ 1 (mod 4)
• p ≡ 3 (mod 4)
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Theorem 57. An odd prime is a sum of two squares if and only if it is congruent to 1 modulo 4.

Theorem 58 (Sums of Two Squares Theorem). A positive integer n is a sum of two squares if and only if:
for every prime p such that p ≡ 3 (mod 4) and p divides n, the multiplicity of p in the prime factorization
of n is even.
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Definition 59. A finite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2+
1

...+ 1
an

for some integers a0 ∈ Z, a1, . . . , an ∈ Z>0. We write [a0; a1, . . . , an] as shorthand for this.
An infinite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2+
1

a3+
1

...
for some integers a0 ∈ Z, a1, a2, a3, . . . ∈ Z>0.
We write [a0; a1, a2, . . . ] as shorthand for this.

By a continued fraction we mean either an infinite or finite continued fraction. We call the numbers ai
the partial quotients in the continued fraction.

Definition 60. Given an infinite continued fraction [a0; a1, a2, . . . ], the k-th convergent of the continued
fraction is the value Ck of the finite continued fraction [a0; a1, . . . , ak].



Theorem 61. Every infinite continued fraction converges to a real number; i.e., for any [a0; a1, a2, a3, . . .]
with a0 ∈ Z and a1, a2, . . . ∈ Z>0, the sequence of convergents C1, C2, C3, . . . converges. We call this limit
the value of the infinite continued fraction.

Algorithm 62 (Continued Fraction Algorithm). Given a real number r,
(I) Start with β0 := r and n := 0.

(II) Set an := bβnc.
(III) If an = βn, STOP; the continued fraction is [a0; a1, . . . , an].

Else, set βn+1 := (βn − an)−1, and return to Step (??).
If the algorithm does not terminate, the continued fraction is [a0; a1, a2, . . . ].

Theorem 63. For any real number r, the continued fraction obtained from the Continued Fraction Algo-
rithm with input r converges to r.

Proposition 64. Let r be a real number. The Continued Fraction Algorithm with input r terminates in
finitely many steps if and only if r is rational.

Theorem 65 (Dirichlet Approximation Theorem). Let r = [a0; a1, a2, a3, . . . ] be a real number. Then for

every convergent Ck =
pk
qk

(in lowest terms), we have
∣∣∣∣r − pk

qk

∣∣∣∣ < 1

q2k
.

In particular, if r is irrational, there are infinitely many rational numbers
p

q
such that

∣∣∣∣r − p

q

∣∣∣∣ < 1

q2
.

Proposition 66. Let [a0; a1, a2, . . . ] be a continued fraction. Set
p0 := a0, p1 := a0a1 + 1, pk := akpk−1 + pk−2

q0 := 1, q1 := a1, qk := akqk−1 + qk−2.

Then,

(1) Ck =
pk
qk

for all k ≥ 0, and

(2) pkqk−1 − pk−1qk = (−1)k−1 for all k ≥ 1.
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Theorem 67. Let r be a real number, Ck = pk
qk

be the k-th convergent of r, and p
q
6= r be a rational number,

with q > 0. If q < qk, then
∣∣∣∣r − p

q

∣∣∣∣ > ∣∣∣∣r − pk
qk

∣∣∣∣.
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Definition 68. The equation x2 − Dy2 = 1 for some fixed positive integer D that is not a perfect square,
where the variables x, y range through integers is called a Pell’s equation. We say that a solution (x0, y0)
is a positive solution if x0, y0 are both positive integers. We say that one positive solution (x0, y0) is smaller
than another positive solution (x1, y1) if x0 < x1; equivalently, y0 < y1.

Definition 69. Let D be a positive integer that is not a perfect square. We define the quadratic ring of D to
be

Z[
√
D] := {a+ b

√
D | a, b ∈ Z} ⊆ R.

Definition 70. For the quadratic ring Z[
√
D] we define the norm function

N : Z[
√
D]→ Z N(a+ b

√
D) = a2 − b2D.

Note that N(a+ b
√
D) = (a+ b

√
D)(a− b

√
D).



Lemma 71. For the quadratic ring Z[
√
D] the norm function satisfies the multiplicative property N(αβ) =

N(α)N(β).

Theorem 72. Let D be a positive integer that is not a perfect square. Consider the Pell’s equation x2 −
Dy2 = 1. Let (a, b) be the smallest positive solution (assuming that some positive solution exists). Then
every positive solution (c, d) can be obtained by the rule

c+ d
√
D = (a+ b

√
D)k

for some positive integer k.
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Theorem 73. LetD be a positive integer that is not a perfect square. Then the Pell’s equation x2−Dy2 = 1
has a positive solution.

Theorem 74. Let D be a positive integer that is not a perfect square. For every positive solution (a, b) to
the Pell’s equation x2 − Dy2 = 1, there is some k ∈ Z≥0 such that the ratio a

b
is a convergent Ck of the

continued fraction of
√
D.

Theorem 75. Let r be an irrational real number. If p, q are integers with q > 0 such that |r − p
q
| < 1

2q2
,

then there is some k ∈ Z≥0 such that p
q

is a convergent Ck of the continued fraction of r.
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Theorem 76. Let r be a real number, Ck = pk
qk

be the k-th convergent of r, and p
q
6= r be a rational number,

with q > 0. If q < qk, then
∣∣∣∣r − p

q

∣∣∣∣ > ∣∣∣∣r − pk
qk

∣∣∣∣.
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Definition 77. A triangular number is a natural number Tn that counts the number of dots in a triangular
array with n elements along the base.

Definition 78. A pentagonal number is a natural number Pn that counts the number of dots in a pentagonal
array (with a fixed corner) with n elements along the base.

Definition 79. A centered hexagonal number is a natural number Hn that counts the number of dots in a
hexagonal array (with a fixed center) with n elements along the base.
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Definition 80. A (real) elliptic curve is the solution set E in R2 to an equation of the form y2 = x3+ax+ b
for real constants a, b ∈ R that satisfy the technical assumption that 4a3+27b2 6= 0. For an elliptic curve E
we define E = E ∪ {∞}, where∞ is a formal symbol.

Definition 81. For an elliptic curve E, and points P,Q ∈ E with P 6= Q, we set:

P∨ := the reflection of P over the x-axis

P ? Q := R∨, where R is the third point of intersection of the line between P and Q and E

P ? P := S∨, where S is the other point of intersection of the tangent line to E at P and E.

Theorem 82. There is a group structure on E with operation ?, identity element∞, and inverse −∨.
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Theorem 83. If E is a real elliptic curve given by the equation y2 = x3 + ax + b for rational numbers
a, b ∈ Q, then the set of rational points onE (along with the infinity point “∞”) form a group with operation
?, identity element∞, and inverse −∨. We denote this group by EQ.
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Definition 84. Let p ≥ 5 be a prime. An elliptic curve over Zp is the solution setEp in Zp×Zp to an equation
of the form y2 = x3 + [a]x + [b] for real constants [a], [b] ∈ Zp that satisfy the technical assumption that
[4][a]3 + [27][b]2 6= 0. For an elliptic curve Ep we define Ep = Ep ∪ {∞}, where∞ is a formal symbol.

Theorem 85. There is a group structure on Ep with operation ?, identity element∞, and inverse −∨ given
by the same geometric rules as in the real case.


