WORKSHEET #1

Definition 1. A triple (a, b, c) of natural numbers is a **Pythagoran triple** if they form the side lengths of a right triangle, where c is the length of the hypotenuse.

Theorem 2 (Fundamental Theorem of Arithmetic). *Every natural number* $n \ge 1$ *can be written as a product of prime numbers:*

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}.$$

This expression is unique up to reordering.

Definition 3. We call the number e_i the multiplicity of the prime p_i in the prime factorization of

 $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}.$

Definition 4. Let m, n be integers and $K \ge 1$ be a natural number. We say that m is congruent to n modulo K, written as $m \equiv n \pmod{K}$, if m - n is a multiple of K.

Theorem 5. Let *n* be an integer and $K \ge 1$ a natural number. Then *n* is congruent to exactly one nonnnegative integer between 0 and K - 1: this number is the "remainder" when you divide *n* by *K*.

Proposition 6. Let m, m', n, n' and K be natural numbers. Suppose that

 $m \equiv m' \pmod{K}$ and $n \equiv n' \pmod{K}$.

Then

 $m + n \equiv m' + n' \pmod{K}$ and $mn \equiv m'n' \pmod{K}$.

Definition 7. A triple (a, b, c) of natural numbers is a **primitive Pythagoran triple (PPT)** if $a^2 + b^2 = c^2$, and there is no common factor of a, b, c greater than 1; equivalently, a, b, c have no common prime factor.

Theorem 8. The set of primitive Pythagorean triples (a, b, c) with a odd is given by the formula

$$a = st, \quad b = \frac{s^2 - t^2}{2}, \quad c = \frac{s^2 + t^2}{2},$$

where $s > t \ge 1$ are odd integers with no common factors.

Theorem 9. The set of points on the unit circle $x^2 + y^2 = 1$ with positive rational coordinates is given by the formula

$$(x,y) = \left(\frac{2v}{v^2+1}, \frac{v^2-1}{v^2+1}\right)$$

where v ranges through rational numbers greater than one.

WORKSHEET #2

Definition 10. The greatest common divisor of two integers a and b, denoted gcd(a, b), is the largest integer that divides a and b.

Definition 11. *Two integers* a *and* b *are coprime if* gcd(a, b) = 1.

Theorem 12. The Euclidean algorithm terminates and outputs the correct value of gcd(a, b).

Definition 13. An expression of the form ra + sb with $r, s \in \mathbb{Z}$ is a linear combination of a and b.

Corollary 14. If a, b are integers, then gcd(a, b) can be realized as a linear combination of a and b. Concretely, we can use the Euclidean algorithm to do this.

Theorem 15. Let a, b, c be integers. The equation

$$ax + by = c$$

has an integer solution if and only if c is divisible by d := gcd(a, b). If this is the case, there are infinitely many solutions. If (x_0, y_0) is a one particular solution, then the general solution is of the form

 $x = x_0 - (b/d)n, \quad y = y_0 + (a/d)n$

as n ranges through all integers.

PROBLEM SET #1

Lemma 16. Lat a, b, c be integers. If a and b are coprime, and a divides bc, then a divides c.

WORKSHEET #3

Definition 17. A congruence class modulo K is a set of the form

 $[a] := \{ n \in \mathbb{Z} \mid n \equiv a \pmod{K} \}$

for some $a \in \mathbb{Z}$.

Definition 18. A *representative* for a congruence class is an element of the congruence class. **Proposition 19.** Given K > 0, the set of integers \mathbb{Z} is the disjoint union of K congruence classes:

$$\mathbb{Z} = [0] \sqcup [1] \sqcup \cdots \sqcup [K-1].$$

Definition 20. The ring \mathbb{Z}_K is the set of congruence classes modulo K:

$$\{[0], [1], \dots, [K-1]\}$$

equipped with the operations

$$[a] + [b] = [a + b]$$
 and $[a][b] = [ab]$.

Definition 21. We say that a number a is a **unit modulo** K if there is an integer solution x to $ax \equiv 1 \pmod{K}$, and we say that such a number x is an **inverse modulo** K to a.

Definition 22. We say that a congruence class [a] is a **unit** in \mathbb{Z}_K if there is a congruence class $x \in \mathbb{Z}_K$ such that [a]x = [1], and we say that such a class x is an **inverse** to [a] in \mathbb{Z}_K .

Theorem 23. Let *a* and *n* be integers, with *n* positive. Then *a* is a unit modulo *n* if and only if *a* and *n* are coprime.

Theorem 24 (Chinese Remainder Theorem). Given $m_1, \ldots, m_k > 0$ integers such that m_i and m_j are coprime for each $i \neq j$, and $a_1, \ldots, a_k \in \mathbb{Z}$, the system of congruences

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots & \vdots \\ x \equiv a_k \pmod{m_k} \end{cases}$$

has a solution $x \in \mathbb{Z}$. Moreover, the set of solutions forms a unique congruence class modulo $m_1m_2\cdots m_k$.

PROBLEM SET #2

Lemma 25. Lat a, b, c be integers. If a and b are coprime, a divides c, and b divides c, then a divides bc.

Definition 26. Given integers a_1, \ldots, a_m , the greatest common divisor of a_1, \ldots, a_m is the largest integer that divides all of them.

Theorem 27. Let a, b, n be integers, with n > 0. Then [a]x = [b] has a solution x in \mathbb{Z}_n if and only if gcd(a, n) divides b. In this case, the number of distinct solutions is exactly gcd(a, n).

WORKSHEET #4

Definition 28. A group is a set G equipped with a product operation

$$G \times G \to G \qquad (g,h) \mapsto gh$$

and an *identity* element $1 \in G$ such that

- the product is associative: (gh)k = g(hk) for all $g, h, k \in G$,
- g1 = 1g = g for all $g \in G$, and
- for every $g \in G$, there is an inverse element $g^{-1} \in G$ such that $gg^{-1} = g^{-1}g = 1$.

Definition 29. A group is abelian if the product is commutative: gh = hg for all $g, h \in G$.

Definition 30. A *finite group* is a group G that is a finite set.

Definition 31. Let G be a group and $g \in G$. The order of g is the smallest positive integer n such that $g^n = e$, if some such n exists, and ∞ if no such integer exists.

Theorem 32 (Lagrange's Theorem). Let G be a finite group and $g \in G$. Then the order of g is finite and divides the cardinality of the group G.

Theorem 33 (Fermat's Little Theorem). *Let p be a prime number and a an integer. If p does not divide a, then*

$$a^{p-1} \equiv 1 \pmod{p}$$

Definition 34. Let *n* be a positive integer. We define $\varphi(n)$ to be the number of elements of \mathbb{Z}_n^{\times} . We call this *Euler's phi function*.

Proposition 35. Euler's phi function satisfies the following properties.

- (1) If p is a prime and n is a positive integer, then $\varphi(p^n) = p^{n-1}(p-1)$.
- (2) If m, n are coprime positive integers, then $\varphi(mn) = \varphi(m)\varphi(n)$.

Theorem 36 (Euler's Theorem). Let a, n be coprime integers, with n positive. Then

 $a^{\varphi(n)} \equiv 1 \pmod{n}.$

WORKSHEET #5

Proposition 37. Let p be a prime. Let p(x) be a polynomial of degree d with coefficients in \mathbb{Z}_p . Then p(x) has at most d roots in \mathbb{Z}_p .

Lemma 38. If G is a group, $g \in G$, and n a positive integer such that $g^n = 1$, then the order of g divides n.

Definition 39. Let n be a positive integer. An element $x \in \mathbb{Z}_n^{\times}$ is a **primitive root** if the order of x in \mathbb{Z}_n^{\times} equals $\phi(n)$ (the cardinality of \mathbb{Z}_n^{\times}).

Theorem 40. Let p be a prime number. Then there exists a primitive root in \mathbb{Z}_p^{\times} .

Definition 41. *If* [a] *is a primitive root in* \mathbb{Z}_p *, the function*

 $\mathbb{Z}_p^{\times} \to \mathbb{Z}_{p-1}$ $[b] \mapsto [m]$ such that $[b] = [a]^m$

is called the **discrete logarithm** or **index** of \mathbb{Z}_p^{\times} with base [a].

Lemma 42. Let p be a prime and [a] a primitive root in \mathbb{Z}_p . The corresponding discrete logarithm function $I: \mathbb{Z}_p^{\times} \to \mathbb{Z}_{p-1}$ satisfies the property

$$I(xy) = I(x) + I(y) \quad and \quad I(x^n) = [n]I(x)$$

for $x, y \in \mathbb{Z}_p^{\times}$ and $n \in \mathbb{N}$.

Proposition 43. Let n be a positive integer. Then $\sum_{d \mid n} \varphi(d) = n$.

Theorem 44. Let p be a prime. Suppose that there are n distinct solutions to $x^n = 1$ in \mathbb{Z}_p . Then \mathbb{Z}_p^{\times} has exactly $\varphi(n)$ elements of order n.

WORKSHEET #6

Definition 45. We say that an element $x \in \mathbb{Z}_n$ is a square or a quadratic residue if there is some $y \in \mathbb{Z}_n$ such that $y^2 = x$, and in this case, we call y a square root of x.

Definition 46. Let p be an odd prime. For $r \in \mathbb{Z}$ not a multiple of p we define the **Legendre symbol** of r with respect to p as

$$\begin{pmatrix} \frac{r}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } [r] \text{ is a square in } \mathbb{Z}_p, \\ -1 & \text{if } [r] \text{ is a not square in } \mathbb{Z}_p. \end{cases}$$

Theorem 47 (Euler's Criterion). *For* p *an odd prime and* $r \in \mathbb{Z}$ *not a multiple of* p*, we have*

$$\left(\frac{r}{p}\right) \equiv r^{(p-1)/2} \pmod{p}.$$

Theorem 48 (Quadratic Reciprocity part -1). If *p* is odd, then

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

Proposition 49. Let p be an odd prime and a, b integers not divisible by p. Then

(1)
$$a \equiv b \pmod{p}$$
 implies that $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.
(2) $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.
(3) $\left(\frac{a^2}{p}\right) = 1$.

PROBLEM SET #3

Theorem 50. If p is an odd prime and n > 0, then \mathbb{Z}_{p^n} has a primitive root.

WORKSHEET #7

Theorem 51 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then

$$\begin{pmatrix} \frac{p}{q} \end{pmatrix} = \begin{pmatrix} \frac{q}{p} \end{pmatrix} \quad \text{if either } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4},$$
$$\begin{pmatrix} \frac{p}{q} \end{pmatrix} = -\begin{pmatrix} \frac{q}{p} \end{pmatrix} \quad \text{if both } p \equiv 3 \pmod{4} \text{ and } q \equiv 3 \pmod{4}.$$

Theorem 52 (Quadratic Reciprocity part 2). Let p be an odd prime. Then

$$\begin{pmatrix} \frac{2}{p} \end{pmatrix} = 1 \qquad \text{if } p \equiv \pm 1 \pmod{8}, \\ \begin{pmatrix} \frac{2}{p} \end{pmatrix} = -1 \qquad \text{if } p \equiv \pm 3 \pmod{8}.$$

Lemma 53 (Gauss' Lemma). Let p be an odd prime and set $p' = \frac{p-1}{2}$. Note that every integer coprime to p is congruent modulo p to a unique integer in the set $S = \{\pm 1, \pm 2, \dots, \pm p'\}$.

Let a be an integer coprime to p. Consider the sequence

$$a, 2a, 3a, \ldots, p'a$$

and replace each element in the sequence with element of S that is congruent with modulo p to get a list L of p'-many elements of S.

Then $\left(\frac{a}{p}\right) = (-1)^{\nu}$, where ν is the number of negative integers in L.

Lemma 54. Let p and q be two coprime odd positive integers. Then

$$\sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{kq}{p} \right\rfloor + \sum_{\ell=1}^{\frac{q-1}{2}} \left\lfloor \frac{\ell p}{q} \right\rfloor = \frac{p-1}{2} \cdot \frac{q-1}{2}.$$

WORKSHEET #8

Theorem 55 (Euclid). There are infinitely many primes.

Proposition 56. For each of the following conditions, there are infinitely many primes p:

- *p* ≡ 1 (mod 3) *p* ≡ 2 (mod 3)
- $p \equiv 2 \pmod{6}$ • $p \equiv 1 \pmod{4}$
- $p \equiv 1 \pmod{4}$
- $p \equiv 3 \pmod{4}$

WORKSHEET #9

Theorem 57. An odd prime is a sum of two squares if and only if it is congruent to 1 modulo 4.

Theorem 58 (Sums of Two Squares Theorem). A positive integer n is a sum of two squares if and only if: for every prime p such that $p \equiv 3 \pmod{4}$ and p divides n, the multiplicity of p in the prime factorization of n is even.

WORKSHEET #10

Definition 59. A finite continued fraction is an expression of the form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_2}}}}$$

for some integers $a_0 \in \mathbb{Z}, a_1, \ldots, a_n \in \mathbb{Z}_{>0}$. We write $[a_0; a_1, \ldots, a_n]$ as shorthand for this. An infinite continued fraction is an expression of the form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1$$

for some integers $a_0 \in \mathbb{Z}, a_1, a_2, a_3, \ldots \in \mathbb{Z}_{>0}$. We write $[a_0; a_1, a_2, \ldots]$ as shorthand for this.

By a continued fraction we mean either an infinite or finite continued fraction. We call the numbers a_i the partial quotients in the continued fraction.

Definition 60. Given an infinite continued fraction $[a_0; a_1, a_2, ...]$, the k-th convergent of the continued fraction is the value C_k of the finite continued fraction $[a_0; a_1, ..., a_k]$.

Theorem 61. Every infinite continued fraction converges to a real number; i.e., for any $[a_0; a_1, a_2, a_3, ...]$ with $a_0 \in \mathbb{Z}$ and $a_1, a_2, ... \in \mathbb{Z}_{>0}$, the sequence of convergents $C_1, C_2, C_3, ...$ converges. We call this limit the value of the infinite continued fraction.

Algorithm 62 (Continued Fraction Algorithm). Given a real number r,

- (I) Start with $\beta_0 := r$ and n := 0.
- (II) Set $a_n := |\beta_n|$.
- (III) If $a_n = \beta_n$, STOP; the continued fraction is $[a_0; a_1, \ldots, a_n]$.
 - *Else, set* $\beta_{n+1} := (\beta_n a_n)^{-1}$ *, and return to Step* (??).

If the algorithm does not terminate, the continued fraction is $[a_0; a_1, a_2, ...]$.

Theorem 63. For any real number r, the continued fraction obtained from the Continued Fraction Algorithm with input r converges to r.

Proposition 64. Let r be a real number. The Continued Fraction Algorithm with input r terminates in finitely many steps if and only if r is rational.

Theorem 65 (Dirichlet Approximation Theorem). Let $r = [a_0; a_1, a_2, a_3, ...]$ be a real number. Then for every convergent $C_k = \frac{p_k}{q_k}$ (in lowest terms), we have $\left|r - \frac{p_k}{q_k}\right| < \frac{1}{q_k^2}$.

In particular, if r is irrational, there are infinitely many rational numbers $\frac{p}{q}$ such that $\left|r - \frac{p}{q}\right| < \frac{1}{q^2}$.

Proposition 66. Let $[a_0; a_1, a_2, ...]$ be a continued fraction. Set

$$p_0 := a_0, \qquad p_1 := a_0 a_1 + 1, \quad p_k := a_k p_{k-1} + p_{k-2}$$
$$q_0 := 1, \qquad q_1 := a_1, \qquad q_k := a_k q_{k-1} + q_{k-2}$$

Then,

(1)
$$C_k = \frac{p_k}{q_k}$$
 for all $k \ge 0$, and
(2) $p_k q_{k-1} - p_{k-1} q_k = (-1)^{k-1}$ for all $k \ge 1$

PROBLEM SET #5

Theorem 67. Let r be a real number, $C_k = \frac{p_k}{q_k}$ be the k-th convergent of r, and $\frac{p}{q} \neq r$ be a rational number, with q > 0. If $q < q_k$, then $\left| r - \frac{p}{q} \right| > \left| r - \frac{p_k}{q_k} \right|$.

WORKSHEET #11

Definition 68. The equation $x^2 - Dy^2 = 1$ for some fixed positive integer D that is not a perfect square, where the variables x, y range through integers is called a **Pell's equation**. We say that a solution (x_0, y_0) is a **positive solution** if x_0, y_0 are both positive integers. We say that one positive solution (x_0, y_0) is **smaller** than another positive solution (x_1, y_1) if $x_0 < x_1$; equivalently, $y_0 < y_1$.

Definition 69. Let D be a positive integer that is not a perfect square. We define the **quadratic ring** of D to be

$$\mathbb{Z}[\sqrt{D}] := \{a + b\sqrt{D} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{R}$$

Definition 70. For the quadratic ring $\mathbb{Z}[\sqrt{D}]$ we define the **norm** function

$$N: \mathbb{Z}[\sqrt{D}] \to \mathbb{Z}$$
 $N(a+b\sqrt{D}) = a^2 - b^2 D.$

Note that $N(a + b\sqrt{D}) = (a + b\sqrt{D})(a - b\sqrt{D}).$

Lemma 71. For the quadratic ring $\mathbb{Z}[\sqrt{D}]$ the norm function satisfies the multiplicative property $N(\alpha\beta) = N(\alpha)N(\beta)$.

Theorem 72. Let D be a positive integer that is not a perfect square. Consider the Pell's equation $x^2 - Dy^2 = 1$. Let (a, b) be the smallest positive solution (assuming that some positive solution exists). Then every positive solution (c, d) can be obtained by the rule

$$c + d\sqrt{D} = (a + b\sqrt{D})^k$$

for some positive integer k.

WORKSHEET #12

Theorem 73. Let D be a positive integer that is not a perfect square. Then the Pell's equation $x^2 - Dy^2 = 1$ has a positive solution.

Theorem 74. Let D be a positive integer that is not a perfect square. For every positive solution (a, b) to the Pell's equation $x^2 - Dy^2 = 1$, there is some $k \in \mathbb{Z}_{\geq 0}$ such that the ratio $\frac{a}{b}$ is a convergent C_k of the continued fraction of \sqrt{D} .

Theorem 75. Let r be an irrational real number. If p, q are integers with q > 0 such that $|r - \frac{p}{q}| < \frac{1}{2q^2}$, then there is some $k \in \mathbb{Z}_{\geq 0}$ such that $\frac{p}{q}$ is a convergent C_k of the continued fraction of r.

PROBLEM SET #5

Theorem 76. Let r be a real number, $C_k = \frac{p_k}{q_k}$ be the k-th convergent of r, and $\frac{p}{q} \neq r$ be a rational number, with q > 0. If $q < q_k$, then $\left| r - \frac{p}{q} \right| > \left| r - \frac{p_k}{q_k} \right|$.

WORKSHEET #13

Definition 77. A triangular number is a natural number T_n that counts the number of dots in a triangular array with n elements along the base.

Definition 78. A pentagonal number is a natural number P_n that counts the number of dots in a pentagonal array (with a fixed corner) with n elements along the base.

Definition 79. A centered hexagonal number is a natural number H_n that counts the number of dots in a hexagonal array (with a fixed center) with n elements along the base.

WORKSHEET #14

Definition 80. A (real) *elliptic curve* is the solution set E in \mathbb{R}^2 to an equation of the form $y^2 = x^3 + ax + b$ for real constants $a, b \in \mathbb{R}$ that satisfy the technical assumption that $4a^3 + 27b^2 \neq 0$. For an elliptic curve E we define $\overline{E} = E \cup \{\infty\}$, where ∞ is a formal symbol.

Definition 81. For an elliptic curve E, and points $P, Q \in E$ with $P \neq Q$, we set:

 $P^{\vee} :=$ the reflection of P over the x-axis

 $P \star Q := R^{\vee}$, where R is the third point of intersection of the line between P and Q and E

 $P \star P := S^{\vee}$, where S is the other point of intersection of the tangent line to E at P and E.

Theorem 82. There is a group structure on \overline{E} with operation \star , identity element ∞ , and inverse $-^{\vee}$.

WORKSHEET #15

Theorem 83. If E is a real elliptic curve given by the equation $y^2 = x^3 + ax + b$ for rational numbers $a, b \in \mathbb{Q}$, then the set of rational points on E (along with the infinity point " ∞ ") form a group with operation \star , identity element ∞ , and inverse $-^{\vee}$. We denote this group by $E_{\mathbb{Q}}$.

WORKSHEET #16

Definition 84. Let $p \ge 5$ be a prime. An *elliptic curve* over \mathbb{Z}_p is the solution set E_p in $\mathbb{Z}_p \times \mathbb{Z}_p$ to an equation of the form $y^2 = x^3 + [a]x + [b]$ for real constants $[a], [b] \in \mathbb{Z}_p$ that satisfy the technical assumption that $[4][a]^3 + [27][b]^2 \ne 0$. For an elliptic curve E_p we define $\overline{E}_p = E_p \cup \{\infty\}$, where ∞ is a formal symbol.

Theorem 85. There is a group structure on \overline{E}_p with operation \star , identity element ∞ , and inverse $-^{\vee}$ given by the same geometric rules as in the real case.