Worksheet \#1

Definition 1. A triple (a, b, c) of natural numbers is a Pythagoran triple if they form the side lengths of a right triangle, where c is the length of the hypotenuse.

Theorem 2 (Fundamental Theorem of Arithmetic). Every natural number $n \geq 1$ can be written as a product of prime numbers:

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} .
$$

This expression is unique up to reordering.
Definition 3. We call the number e_{i} the multiplicity of the prime p_{i} in the prime factorization of

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

Definition 4. Let m, n be integers and $K \geq 1$ be a natural number. We say that m is congruent to n modulo K, written as $m \equiv n(\bmod K)$, if $m-n$ is a multiple of K.

Theorem 5. Let n be an integer and $K \geq 1$ a natural number. Then n is congruent to exactly one nonnnegative integer between 0 and $K-1$: this number is the "remainder" when you divide n by K.

Proposition 6. Let $m, m^{\prime}, n, n^{\prime}$ and K be natural numbers. Suppose that

$$
m \equiv m^{\prime} \quad(\bmod K) \quad \text { and } \quad n \equiv n^{\prime} \quad(\bmod K)
$$

Then

$$
m+n \equiv m^{\prime}+n^{\prime} \quad(\bmod K) \quad \text { and } \quad m n \equiv m^{\prime} n^{\prime} \quad(\bmod K) .
$$

Definition 7. A triple (a, b, c) of natural numbers is a primitive Pythagoran triple (PPT) if $a^{2}+b^{2}=c^{2}$, and there is no common factor of a, b, c greater than 1; equivalently, a, b, c have no common prime factor.

Theorem 8. The set of primitive Pythagorean triples (a, b, c) with a odd is given by the formula

$$
a=s t, \quad b=\frac{s^{2}-t^{2}}{2}, \quad c=\frac{s^{2}+t^{2}}{2}
$$

where $s>t \geq 1$ are odd integers with no common factors.
Theorem 9. The set of points on the unit circle $x^{2}+y^{2}=1$ with positive rational coordinates is given by the formula

$$
(x, y)=\left(\frac{2 v}{v^{2}+1}, \frac{v^{2}-1}{v^{2}+1}\right)
$$

where v ranges through rational numbers greater than one.

Worksheet \#2

Definition 10. The greatest common divisor of two integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest integer that divides a and b.

Definition 11. Two integers a and b are coprime if $\operatorname{gcd}(a, b)=1$.
Theorem 12. The Euclidean algorithm terminates and outputs the correct value of $\operatorname{gcd}(a, b)$.
Definition 13. An expression of the form $r a+s b$ with $r, s \in \mathbb{Z}$ is a linear combination of a and b.
Corollary 14. If a, b are integers, then $\operatorname{gcd}(a, b)$ can be realized as a linear combination of a and b. Concretely, we can use the Euclidean algorithm to do this.

Theorem 15. Let a, b, c be integers. The equation

$$
a x+b y=c
$$

has an integer solution if and only if c is divisible by $d:=\operatorname{gcd}(a, b)$. If this is the case, there are infinitely many solutions. If $\left(x_{0}, y_{0}\right)$ is a one particular solution, then the general solution is of the form

$$
x=x_{0}-(b / d) n, \quad y=y_{0}+(a / d) n
$$

as n ranges through all integers.

Problem Set \#1

Lemma 16. Lat a, b, c be integers. If a and b are coprime, and a divides $b c$, then a divides c.
Worksheet \#3
Definition 17. A congruence class modulo K is a set of the form

$$
[a]:=\{n \in \mathbb{Z} \mid n \equiv a \quad(\bmod K)\}
$$

for some $a \in \mathbb{Z}$.
Definition 18. A representative for a congruence class is an element of the congruence class.
Proposition 19. Given $K>0$, the set of integers \mathbb{Z} is the disjoint union of K congruence classes:

$$
\mathbb{Z}=[0] \sqcup[1] \sqcup \cdots \sqcup[K-1] .
$$

Definition 20. The ring \mathbb{Z}_{K} is the set of congruence classes modulo K :

$$
\{[0],[1], \ldots,[K-1]\}
$$

equipped with the operations

$$
[a]+[b]=[a+b] \quad \text { and } \quad[a][b]=[a b] .
$$

Definition 21. We say that a number a is a unit modulo K if there is an integer solution x to $a x \equiv 1$ $(\bmod K)$, and we say that such a number x is an inverse modulo K to a.
Definition 22. We say that a congruence class $[a]$ is a unit in \mathbb{Z}_{K} if there is a congruence class $x \in \mathbb{Z}_{K}$ such that $[a] x=[1]$, and we say that such a class x is an inverse to $[a]$ in \mathbb{Z}_{K}.
Theorem 23. Let a and n be integers, with n positive. Then a is a unit modulo n if and only if a and n are coprime.
Theorem 24 (Chinese Remainder Theorem). Given $m_{1}, \ldots, m_{k}>0$ integers such that m_{i} and m_{j} are coprime for each $i \neq j$, and $a_{1}, \ldots, a_{k} \in \mathbb{Z}$, the system of congruences

$$
\left\{\begin{array}{cc}
x \equiv a_{1} & \left(\bmod m_{1}\right) \\
x \equiv a_{2} & \left(\bmod m_{2}\right) \\
\vdots & \vdots \\
x \equiv a_{k} & \left(\bmod m_{k}\right)
\end{array}\right.
$$

has a solution $x \in \mathbb{Z}$. Moreover, the set of solutions forms a unique congruence class modulo $m_{1} m_{2} \cdots m_{k}$.

Problem Set \#2

Lemma 25. Lat a, b, c be integers. If a and b are coprime, a divides c, and b divides c, then a divides $b c$.
Definition 26. Given integers a_{1}, \ldots, a_{m}, the greatest common divisor of a_{1}, \ldots, a_{m} is the largest integer that divides all of them.
Theorem 27. Let a, b, n be integers, with $n>0$. Then $[a] x=[b]$ has a solution x in \mathbb{Z}_{n} if and only if $\operatorname{gcd}(a, n)$ divides b. In this case, the number of distinct solutions is exactly $\operatorname{gcd}(a, n)$.

Worksheet \#4

Definition 28. A group is a set G equipped with a product operation

$$
G \times G \rightarrow G \quad(g, h) \mapsto g h
$$

and an identity element $1 \in G$ such that

- the product is associative: $(g h) k=g(h k)$ for all $g, h, k \in G$,
- $g 1=1 g=g$ for all $g \in G$, and
- for every $g \in G$, there is an inverse element $g^{-1} \in G$ such that $g g^{-1}=g^{-1} g=1$.

Definition 29. A group is abelian if the product is commutative: $g h=h g$ for all $g, h \in G$.
Definition 30. A finite group is a group G that is a finite set.
Definition 31. Let G be a group and $g \in G$. The order of g is the smallest positive integer n such that $g^{n}=e$, if some such n exists, and ∞ if no such integer exists.

Theorem 32 (Lagrange's Theorem). Let G be a finite group and $g \in G$. Then the order of g is finite and divides the cardinality of the group G.

Theorem 33 (Fermat's Little Theorem). Let p be a prime number and a an integer. If p does not divide a, then

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

Definition 34. Let n be a positive integer. We define $\varphi(n)$ to be the number of elements of \mathbb{Z}_{n}^{\times}. We call this Euler's phi function.

Proposition 35. Euler's phi function satisfies the following properties.
(1) If p is a prime and n is a positive integer, then $\varphi\left(p^{n}\right)=p^{n-1}(p-1)$.
(2) If m, n are coprime positive integers, then $\varphi(m n)=\varphi(m) \varphi(n)$.

Theorem 36 (Euler's Theorem). Let a, n be coprime integers, with n positive. Then

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n) .
$$

Worksheet \#5

Proposition 37. Let p be a prime. Let $p(x)$ be a polynomial of degree d with coefficients in \mathbb{Z}_{p}. Then $p(x)$ has at most d roots in \mathbb{Z}_{p}.
Lemma 38. If G is a group, $g \in G$, and n a positive integer such that $g^{n}=1$, then the order of g divides n.
Definition 39. Let n be a positive integer. An element $x \in \mathbb{Z}_{n}^{\times}$is a primitive root if the order of x in \mathbb{Z}_{n}^{\times} equals $\phi(n)$ (the cardinality of \mathbb{Z}_{n}^{\times}).

Theorem 40. Let p be a prime number. Then there exists a primitive root in \mathbb{Z}_{p}^{\times}.
Definition 41. If $[a]$ is a primitive root in \mathbb{Z}_{p}, the function

$$
\mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p-1} \quad[b] \mapsto[m] \text { such that }[b]=[a]^{m}
$$

is called the discrete logarithm or index of \mathbb{Z}_{p}^{\times}with base $[a]$.
Lemma 42. Let p be a prime and $[a]$ a primitive root in \mathbb{Z}_{p}. The corresponding discrete logarithm function $I: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p-1}$ satisfies the property

$$
I(x y)=I(x)+I(y) \quad \text { and } \quad I\left(x^{n}\right)=[n] I(x)
$$

for $x, y \in \mathbb{Z}_{p}^{\times}$and $n \in \mathbb{N}$.

Proposition 43. Let n be a positive integer. Then $\sum_{d \mid n} \varphi(d)=n$.
Theorem 44. Let p be a prime. Suppose that there are n distinct solutions to $x^{n}=1$ in \mathbb{Z}_{p}. Then \mathbb{Z}_{p}^{\times}has exactly $\varphi(n)$ elements of order n.

WORKSHEET \#6

Definition 45. We say that an element $x \in \mathbb{Z}_{n}$ is a square or a quadratic residue if there is some $y \in \mathbb{Z}_{n}$ such that $y^{2}=x$, and in this case, we call y a square root of x.

Definition 46. Let p be an odd prime. For $r \in \mathbb{Z}$ not a multiple of p we define the Legendre symbol of r with respect to p as

$$
\binom{r}{p}= \begin{cases}1 & \text { if }[r] \text { is a square in } \mathbb{Z}_{p} \\ -1 & \text { if }[r] \text { is a not square in } \mathbb{Z}_{p} .\end{cases}
$$

Theorem 47 (Euler's Criterion). For p an odd prime and $r \in \mathbb{Z}$ not a multiple of p, we have

$$
\left(\frac{r}{p}\right) \equiv r^{(p-1) / 2} \quad(\bmod p)
$$

Theorem 48 (Quadratic Reciprocity part -1). If p is odd, then

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 & (\bmod 4) \\
-1 & \text { if } p \equiv 3 & (\bmod 4)
\end{array} .\right.
$$

Proposition 49. Let p be an odd prime and a, b integers not divisible by p. Then
(1) $a \equiv b(\bmod p)$ implies that $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
(2) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
(3) $\left(\frac{a^{2}}{p}\right)=1$.

Problem Set \#3

Theorem 50. If p is an odd prime and $n>0$, then $\mathbb{Z}_{p^{n}}$ has a primitive root.

Worksheet \#7

Theorem 51 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then

$$
\begin{array}{ll}
\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right) & \text { if either } p \equiv 1(\bmod 4) \text { or } q \equiv 1(\bmod 4), \\
\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right) & \text { if both } p \equiv 3(\bmod 4) \text { and } q \equiv 3(\bmod 4) .
\end{array}
$$

Theorem 52 (Quadratic Reciprocity part 2). Let p be an odd prime. Then

$$
\begin{array}{ll}
\left(\frac{2}{p}\right)=1 & \text { if } p \equiv \pm 1(\bmod 8), \\
\left(\frac{2}{p}\right)=-1 & \text { if } p \equiv \pm 3(\bmod 8) .
\end{array}
$$

Lemma 53 (Gauss' Lemma). Let p be an odd prime and set $p^{\prime}=\frac{p-1}{2}$. Note that every integer coprime to p is congruent modulo p to a unique integer in the set $S=\left\{ \pm 1, \pm 2, \cdots, \pm p^{\prime}\right\}$.

Let a be an integer coprime to p. Consider the sequence

$$
a, 2 a, 3 a, \ldots, p^{\prime} a
$$

and replace each element in the sequence with element of S that is congruent with modulo p to get a list L of p^{\prime}-many elements of S.
Then $\left(\frac{a}{p}\right)=(-1)^{\nu}$, where ν is the number of negative integers in L.
Lemma 54. Let p and q be two coprime odd positive integers. Then

$$
\sum_{k=1}^{\frac{p-1}{2}}\left\lfloor\frac{k q}{p}\right\rfloor+\sum_{\ell=1}^{\frac{q-1}{2}}\left\lfloor\frac{\ell p}{q}\right\rfloor=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

WORKSHEET \#8

Theorem 55 (Euclid). There are infinitely many primes.
Proposition 56. For each of the following conditions, there are infinitely many primes p :

- $p \equiv 1(\bmod 3)$
- $p \equiv 2(\bmod 3)$
- $p \equiv 1(\bmod 4)$
- $p \equiv 3(\bmod 4)$

Worksheet \#9

Theorem 57. An odd prime is a sum of two squares if and only if it is congruent to 1 modulo 4.
Theorem 58 (Sums of Two Squares Theorem). A positive integer n is a sum of two squares if and only if: for every prime p such that $p \equiv 3(\bmod 4)$ and p divides n, the multiplicity of p in the prime factorization of n is even.

Worksheet \#10

Definition 59. A finite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{n}}}}}
$$

for some integers $a_{0} \in \mathbb{Z}, a_{1}, \ldots, a_{n} \in \mathbb{Z}_{>0}$. We write $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ as shorthand for this.
An infinite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

for some integers $a_{0} \in \mathbb{Z}, a_{1}, a_{2}, a_{3}, \ldots \in \mathbb{Z}_{>0}$.
We write $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ as shorthand for this.
By a continued fraction we mean either an infinite or finite continued fraction. We call the numbers a_{i} the partial quotients in the continued fraction.

Definition 60. Given an infinite continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, the k-th convergent of the continued fraction is the value C_{k} of the finite continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$.

Theorem 61. Every infinite continued fraction converges to a real number; i.e., for any $\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{1}, a_{2}, \ldots \in \mathbb{Z}_{>0}$, the sequence of convergents $C_{1}, C_{2}, C_{3}, \ldots$ converges. We call this limit the value of the infinite continued fraction.

Algorithm 62 (Continued Fraction Algorithm). Given a real number r,
(I) Start with $\beta_{0}:=r$ and $n:=0$.
(II) Set $a_{n}:=\left\lfloor\beta_{n}\right\rfloor$.
(III) If $a_{n}=\beta_{n}$, STOP; the continued fraction is $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$. Else, set $\beta_{n+1}:=\left(\beta_{n}-a_{n}\right)^{-1}$, and return to Step (??).
If the algorithm does not terminate, the continued fraction is $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$.
Theorem 63. For any real number r, the continued fraction obtained from the Continued Fraction Algorithm with input r converges to r.
Proposition 64. Let r be a real number. The Continued Fraction Algorithm with input r terminates in finitely many steps if and only if r is rational.

Theorem 65 (Dirichlet Approximation Theorem). Let $r=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ be a real number. Then for every convergent $C_{k}=\frac{p_{k}}{q_{k}}$ (in lowest terms), we have $\left|r-\frac{p_{k}}{q_{k}}\right|<\frac{1}{q_{k}^{2}}$.

In particular, if r is irrational, there are infinitely many rational numbers $\frac{p}{q}$ such that $\left|r-\frac{p}{q}\right|<\frac{1}{q^{2}}$.
Proposition 66. Let $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction. Set

$$
\begin{array}{lll}
p_{0}:=a_{0}, & p_{1}:=a_{0} a_{1}+1, & p_{k}:=a_{k} p_{k-1}+p_{k-2} \\
q_{0}:=1, & q_{1}:=a_{1}, & q_{k}:=a_{k} q_{k-1}+q_{k-2} .
\end{array}
$$

Then,
(1) $C_{k}=\frac{p_{k}}{q_{k}}$ for all $k \geq 0$, and
(2) $p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k-1}$ for all $k \geq 1$.

Problem Set \#5

Theorem 67. Let r be a real number, $C_{k}=\frac{p_{k}}{q_{k}}$ be the k-th convergent of r, and $\frac{p}{q} \neq r$ be a rational number, with $q>0$. If $q<q_{k}$, then $\left|r-\frac{p}{q}\right|>\left|r-\frac{p_{k}}{q_{k}}\right|$.

WORKSHEET \#11

Definition 68. The equation $x^{2}-D y^{2}=1$ for some fixed positive integer D that is not a perfect square, where the variables x, y range through integers is called a Pell's equation. We say that a solution $\left(x_{0}, y_{0}\right)$ is a positive solution if x_{0}, y_{0} are both positive integers. We say that one positive solution $\left(x_{0}, y_{0}\right)$ is smaller than another positive solution $\left(x_{1}, y_{1}\right)$ if $x_{0}<x_{1}$; equivalently, $y_{0}<y_{1}$.
Definition 69. Let D be a positive integer that is not a perfect square. We define the quadratic ring of D to be

$$
\mathbb{Z}[\sqrt{D}]:=\{a+b \sqrt{D} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{R}
$$

Definition 70. For the quadratic ring $\mathbb{Z}[\sqrt{D}]$ we define the norm function

$$
N: \mathbb{Z}[\sqrt{D}] \rightarrow \mathbb{Z} \quad N(a+b \sqrt{D})=a^{2}-b^{2} D
$$

Note that $N(a+b \sqrt{D})=(a+b \sqrt{D})(a-b \sqrt{D})$.

Lemma 71. For the quadratic ring $\mathbb{Z}[\sqrt{D}]$ the norm function satisfies the multiplicative property $N(\alpha \beta)=$ $N(\alpha) N(\beta)$.

Theorem 72. Let D be a positive integer that is not a perfect square. Consider the Pell's equation $x^{2}-$ $D y^{2}=1$. Let (a, b) be the smallest positive solution (assuming that some positive solution exists). Then every positive solution (c, d) can be obtained by the rule

$$
c+d \sqrt{D}=(a+b \sqrt{D})^{k}
$$

for some positive integer k.

WORKSHEET \#12

Theorem 73. Let D be a positive integer that is not a perfect square. Then the Pell's equation $x^{2}-D y^{2}=1$ has a positive solution.

Theorem 74. Let D be a positive integer that is not a perfect square. For every positive solution (a, b) to the Pell's equation $x^{2}-D y^{2}=1$, there is some $k \in \mathbb{Z}_{\geq 0}$ such that the ratio $\frac{a}{b}$ is a convergent C_{k} of the continued fraction of \sqrt{D}.

Theorem 75. Let r be an irrational real number. If p, q are integers with $q>0$ such that $\left|r-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$, then there is some $k \in \mathbb{Z}_{\geq 0}$ such that $\frac{p}{q}$ is a convergent C_{k} of the continued fraction of r.

Problem Set \#5

Theorem 76. Let r be a real number, $C_{k}=\frac{p_{k}}{q_{k}}$ be the k-th convergent of r, and $\frac{p}{q} \neq r$ be a rational number, with $q>0$. If $q<q_{k}$, then $\left|r-\frac{p}{q}\right|>\left|r-\frac{p_{k}}{q_{k}}\right|$.

WORKSHEET \#13

Definition 77. A triangular number is a natural number T_{n} that counts the number of dots in a triangular array with n elements along the base.

Definition 78. A pentagonal number is a natural number P_{n} that counts the number of dots in a pentagonal array (with a fixed corner) with n elements along the base.

Definition 79. A centered hexagonal number is a natural number H_{n} that counts the number of dots in a hexagonal array (with a fixed center) with n elements along the base.

WORKSHEET \#14

Definition 80. A (real) elliptic curve is the solution set E in \mathbb{R}^{2} to an equation of the form $y^{2}=x^{3}+a x+b$ for real constants $a, b \in \mathbb{R}$ that satisfy the technical assumption that $4 a^{3}+27 b^{2} \neq 0$. For an elliptic curve E we define $\bar{E}=E \cup\{\infty\}$, where ∞ is a formal symbol.

Definition 81. For an elliptic curve E, and points $P, Q \in E$ with $P \neq Q$, we set:
$P^{\vee}:=$ the reflection of P over the x-axis
$P \star Q:=R^{\vee}$, where R is the third point of intersection of the line between P and Q and E
$P \star P:=S^{\vee}$, where S is the other point of intersection of the tangent line to E at P and E.
Theorem 82. There is a group structure on \bar{E} with operation \star, identity element ∞, and inverse $-{ }^{\vee}$.

Worksheet \#15

Theorem 83. If E is a real elliptic curve given by the equation $y^{2}=x^{3}+a x+b$ for rational numbers $a, b \in \mathbb{Q}$, then the set of rational points on E (along with the infinity point " ∞ ") form a group with operation \star, identity element ∞, and inverse $-{ }^{\vee}$. We denote this group by $E_{\mathbb{Q}}$.

Worksheet \#16

Definition 84. Let $p \geq 5$ be a prime. An elliptic curve over \mathbb{Z}_{p} is the solution set E_{p} in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ to an equation of the form $y^{2}=x^{3}+[a] x+[b]$ for real constants $[a],[b] \in \mathbb{Z}_{p}$ that satisfy the technical assumption that $[4][a]^{3}+[27][b]^{2} \neq 0$. For an elliptic curve E_{p} we define $\bar{E}_{p}=E_{p} \cup\{\infty\}$, where ∞ is a formal symbol.
Theorem 85. There is a group structure on \bar{E}_{p} with operation \star, identity element ∞, and inverse $-{ }^{\vee}$ given by the same geometric rules as in the real case.

