WORKSHEET #1

Definition 1. A triple (a,b, ¢) of natural numbers is a Pythagoran triple if they form the side lengths of a
right triangle, where c is the length of the hypotenuse.

Theorem 2 (Fundamental Theorem of Arithmetic). Every natural numbern > 1 can be written as a product
of prime numbers:

n=prpy - pi
This expression is unique up to reordering. U
Definition 3. We call the number e; the multiplicity of the prime p; in the prime factorization of

n = p?ng . .ka.
Definition 4. Let m, n be integers and K > 1 be a natural number. We say that m is congruent to n modulo
K, written as m = n (mod K), if m — n is a multiple of K.

Theorem 5. Let n be an integer and K > 1 a natural number. Then n is congruent to exactly one nonnneg-
ative integer between 0 and K — 1: this number is the “remainder” when you divide n by K. 0

Proposition 6. Let m, m',n,n' and K be natural numbers. Suppose that
m=m' (mod K) and n=n" (mod K).
Then
m+n=m'+n" (mod K) and mn=m'n" (mod K). O

Definition 7. A triple (a,b, ¢) of natural numbers is a primitive Pythagoran triple (PPT) if a* + b* = ¢?,
and there is no common factor of a, b, c greater than 1; equivalently, a, b, c have no common prime factor.

Theorem 8. The set of primitive Pythagorean triples (a, b, c) with a odd is given by the formula
s* —t? s° + 12

a S? 2 Y c 2 Y

where s >t > 1 are odd integers with no common factors.

Theorem 9. The set of points on the unit circle x* + y? = 1 with positive rational coordinates is given by

the formula
(2.y) = 20 v?—1
S PR LT |

where v ranges through rational numbers greater than one.
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Definition 10. The greatest common divisor of two integers a and b, denoted gcd(a, b), is the largest integer
that divides a and b.

Definition 11. Two integers a and b are coprime if gcd(a,b) = 1.
Theorem 12. The Euclidean algorithm terminates and outputs the correct value of ged(a, b).
Definition 13. An expression of the form ra + sb with r, s € Z is a linear combination of a and b.

Corollary 14. If a,b are integers, then gcd(a, b) can be realized as a linear combination of a and b. Con-
cretely, we can use the Euclidean algorithm to do this.



Theorem 15. Let a, b, c be integers. The equation
axr + by =c

has an integer solution if and only if ¢ is divisible by d := gcd(a, b). If this is the case, there are infinitely
many solutions. If (xo, yo) is a one particular solution, then the general solution is of the form

x=ux9— (b/d)n, y=1yo+ (a/d)n

as n ranges through all integers.
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Lemma 16. Lat a, b, c be integers. If a and b are coprime, and a divides bc, then a divides c.
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Definition 17. A congruence class modulo K is a set of the form

[al] ={n€Z|n=a (mod K)}
for some a € 7.
Definition 18. A representative for a congruence class is an element of the congruence class.
Proposition 19. Given K > 0, the set of integers Z is the disjoint union of K congruence classes:

Z=[0Julju---u[K —1].
Definition 20. The ring Z is the set of congruence classes modulo K :
{0, [1). ... [ — 1]}
equipped with the operations
[a] +[b] = [a+b] and [a][b] = [ab].

Definition 21. We say that a number a is a unit modulo K if there is an integer solution x to ax = 1
(mod K), and we say that such a number x is an inverse modulo K to a.

Definition 22. We say that a congruence class [a] is a unit in Zy if there is a congruence class v € L
such that [a|x = [1], and we say that such a class x is an inverse to [a] in Z.

Theorem 23. Let a and n be integers, with n positive. Then a is a unit modulo n if and only if a and n are
coprime.

Theorem 24 (Chinese Remainder Theorem). Given my,...,my > 0 integers such that m; and m; are
coprime for each i # j, and aq, . .., ay € Z, the system of congruences

r=a; (modmy)

r=ay (mod my)

r=a, (mod my)

has a solution x € 7. Moreover, the set of solutions forms a unique congruence class modulo myms - - - my,.
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Lemma 25. Lat a, b, c be integers. If a and b are coprime, a divides c, and b divides c, then a divides bc.

Definition 26. Given integers ay, ..., a,,, the greatest common divisor of a1, ..., a,, is the largest integer
that divides all of them.

Theorem 27. Let a,b,n be integers, with n > 0. Then [alx = [b] has a solution x in Z,, if and only if
ged(a, n) divides b. In this case, the number of distinct solutions is exactly ged(a, n).
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Definition 28. A group is a set G equipped with a product operation
GxG—G (g,h) — gh

and an identity element 1 € G such that

e the product is associative: (gh)k = g(hk) for all g,h,k € G,
e gl =1g=gforall g € G, and
o for every g € G, there is an inverse element g~* € G such that gg~' = g~'g = 1.

Definition 29. A group is abelian if the product is commutative: gh = hg for all g,h € G.
Definition 30. A finite group is a group G that is a finite set.

Definition 31. Let G be a group and g € G. The order of g is the smallest positive integer n such that
g" = e, if some such n exists, and oo if no such integer exists.

Theorem 32 (Lagrange’s Theorem). Let G be a finite group and g € G. Then the order of g is finite and
divides the cardinality of the group G.

Theorem 33 (Fermat’s Little Theorem). Let p be a prime number and a an integer. If p does not divide a,
then

a?'=1 (mod p).

Definition 34. Let n be a positive integer. We define ¢(n) to be the number of elements of 7. We call this
Euler’s phi function.

Proposition 35. Euler’s phi function satisfies the following properties.
(1) If p is a prime and n is a positive integer, then p(p") = p" 1 (p — 1).
(2) If m,n are coprime positive integers, then p(mn) = p(m)e(n).

Theorem 36 (Euler’s Theorem). Let a,n be coprime integers, with n positive. Then

a?™ =1 (mod n).
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Proposition 37. Let p be a prime. Let p(x) be a polynomial of degree d with coefficients in Z,. Then p(x)
has at most d roots in Zj,. U

Lemma 38. If G is a group, g € G, and n a positive integer such that g" = 1, then the order of g divides n.

Definition 39. Let n be a positive integer. An element x € Z, is a primitive root if the order of x in 7
equals ¢(n) (the cardinality of 7.} ).

Theorem 40. Let p be a prime number. Then there exists a primitive root in 7.
Definition 41. If [a] is a primitive root in Z,, the function

7y — Ly [b] — [m] such that [b] = [a]™
is called the discrete logarithm or index of .y with base [a).

Lemma 42. Let p be a prime and [a] a primitive root in Z,,. The corresponding discrete logarithm function
I':Z; — Z, 1 satisfies the property

Iay) = I(x) +1(y) and I(z") = [n]I(x)
forx,y € Z; andn € N,



Proposition 43. Let n be a positive integer. Then Z o(d) = n.
d|n

Theorem 44. Let p be a prime. Suppose that there are n distinct solutions to x" = 1 in Z,. Then Z, has
exactly (n) elements of order n.
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Definition 45. We say that an element x € 7, is a square or a quadratic residue if there is some y € Z,
such that y? = x, and in this case, we call y a square root of x.

Definition 46. Let p be an odd prime. For r € Z not a multiple of p we define the Legendre symbol of r
with respect to p as

(f) _ {1 if [r] is a square in Z,,,

p) | =1 if[r]isanotsquareinZ,.

Theorem 47 (Euler’s Criterion). For p an odd prime and r € 7 not a multiple of p, we have

(f) =rP=D/2" (mod p).

p
Theorem 48 (Quadratic Reciprocity part —1). If p is odd, then

-1\ J1 ifp=1 (mod4)
p/) -1 ifp=3 (mod4)
Proposition 49. Let p be an odd prime and a, b integers not divisible by p. Then

b
(1) a =b (mod p) implies that 2) ={-).

p p
172 p p
(3) (“— —1.
p
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Theorem 50. If p is an odd prime and n > 0, then Z,» has a primitive root.

WORKSHEET #7

Theorem 51 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then

<§> = (%) ifeither p =1 (mod 4) or ¢ = 1 (mod 4),

<73> _— (g) if bothp = 3 (mod 4) and q = 3 (mod 4).

q p
Theorem 52 (Quadratic Reciprocity part 2). Let p be an odd prime. Then
2
(—) =1 ifp=+1 (mod 8),
p

(2) =—1  ifp= =43 (mod ).
p



Lemma 53 (Gauss’ Lemma). Let p be an odd prime and set p’ = p%l. Note that every integer coprime to p
is congruent modulo p to a unique integer in the set S = {£1,+2 --- +p'}.
Let a be an integer coprime to p. Consider the sequence

a,2a,3a,...,pa

and replace each element in the sequence with element of S that is congruent with modulo p to get a list L
of p'-many elements of S.

a
Then | — | = (—1)", where v is the number of negative integers in L.
p

Lemma 54. Let p and q be two coprime odd positive integers. Then

k‘qJ VpJ p—1 ¢g—1
By Zl==__.2 -
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Theorem 55 (Euclid). There are infinitely many primes.

Proposition 56. For each of the following conditions, there are infinitely many primes p:
e p=1 (mod 3)

e p=2 (mod 3)
e p=1 (mod 4)
e p=3 (mod 4)
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Theorem 57. An odd prime is a sum of two squares if and only if it is congruent to 1 modulo 4.

Theorem 58 (Sums of Two Squares Theorem). A positive integer n is a sum of two squares if and only if:
for every prime p such that p = 3 (mod 4) and p divides n, the multiplicity of p in the prime factorization
of n is even.
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Definition 59. A finite continued fraction is an expression of the form

1

a1 a2+

. . +%
for some integers ag € 7, ay, . .., a, € Zo. We write |ag; ai, . . ., a,| as shorthand for this.
An infinite continued fraction is an expression of the form

ap +
O+ — 1

for some integers ag € 7, ay,as,0a3, ... € L.
We write [ag; ay, as, . . .| as shorthand for this.

By a continued fraction we mean either an infinite or finite continued fraction. We call the numbers a;
the partial quotients in the continued fraction.

Definition 60. Given an infinite continued fraction [ag; ay, as, ..., the k-th convergent of the continued
fraction is the value C}, of the finite continued fraction [ay; ay, . . . , ay).



Theorem 61. Every infinite continued fraction converges to a real number; i.e., for any |ag; a1, as, as, . . .|
with ag € Z and ay, as, . .. € Z~q, the sequence of convergents C,Cs, Cs, ... converges. We call this limit
the value of the infinite continued fraction.

Algorithm 62 (Continued Fraction Algorithm). Given a real number r,
(I) Start with By := r and n := 0.
(I) Set a,, := |B,]-
(Ill) If a,, = B, STOP; the continued fraction is [ag; ay, . . ., ay].
Else, set 3,11 := (B, — a,) ', and return to Step (??).
If the algorithm does not terminate, the continued fraction is [ag; a1, as, . . . |.

Theorem 63. For any real number r, the continued fraction obtained from the Continued Fraction Algo-
rithm with input v converges to r.

Proposition 64. Let r be a real number. The Continued Fraction Algorithm with input r terminates in
finitely many steps if and only if r is rational.

Theorem 65 (Dirichlet Approximation Theorem). Let r = [ag; a1, as, as, . . .| be a real number. Then for
1
every convergent Cj, = Pk (in lowest terms), we have |r — Pk < .
dk 4k P
1
In particular, if r is irrational, there are infinitely many rational numbers d such that |r — ]—?‘ <.
q q q
Proposition 66. Let [ag; a1, as, .. .| be a continued fraction. Set
Do i=ao,  p1:=aopar + 1, pg = agpr-1+ pr-2
qo =1, ¢ = a, Ok = QkQr—1 + Gr—2-
Then,

(1) C, = @forallk‘ > 0, and
dk
(2) prqr—1 — Pr—1qx = (=1)" " forall k > 1.
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Theorem 67. Let r be a real number, C), = ’;—: be the k-th convergent of r, and § = r be a rational number,
_ b
qk

with ¢ > 0. If ¢ < qx, then

T_BMT
q
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Definition 68. The equation x> — Dy? = 1 for some fixed positive integer D that is not a perfect square,
where the variables x,y range through integers is called a Pell’s equation. We say that a solution (xg, yo)
is a positive solution if x, yo are both positive integers. We say that one positive solution (¢, yo) is smaller
than another positive solution (x1,11) if o < 1, equivalently, yy < ;.

Definition 69. Let D be a positive integer that is not a perfect square. We define the quadratic ring of D to
be
Z[VD] :={a+b/D|a,be Z} CR.

Definition 70. For the quadratic ring Z[\/D] we define the norm function
N:Z[VD|—=Z  N(a+b/D)=a*-0D.
Note that N (a + bv/D) = (a + bv/D)(a — bv/D).



Lemma 71. For the quadratic ring Z[\/D) the norm function satisfies the multiplicative property N(a,3) =
N(a)N(B).
2

Theorem 72. Let D be a positive integer that is not a perfect square. Consider the Pell’s equation x~ —
Dy* = 1. Let (a,b) be the smallest positive solution (assuming that some positive solution exists). Then
every positive solution (c, d) can be obtained by the rule

¢+ dVD = (a+ bV D)

for some positive integer k.

WORKSHEET #12

Theorem 73. Let D be a positive integer that is not a perfect square. Then the Pell’s equation x> — Dy?* = 1
has a positive solution.

Theorem 74. Let D be a positive integer that is not a perfect square. For every positive solution (a,b) to
the Pell’s equation x> — Dy* = 1, there is some k € Zx( such that the ratio 7 is a convergent Cy, of the

continued fraction of / D.

Theorem 75. Let 1 be an irrational real number. If p, q are integers with ¢ > 0 such that |r — §| < #,
then there is some k € Z>q such that § is a convergent C}, of the continued fraction of r.

PROBLEM SET #5
Theorem 76. Let r be a real number, C, = Z—: be the k-th convergent of r, and § # r be a rational number,
_ P
dk

with ¢ > 0. If ¢ < qx, then

T_BHT
q
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Definition 77. A triangular number is a natural number T), that counts the number of dots in a triangular
array with n elements along the base.

Definition 78. A pentagonal number is a natural number P, that counts the number of dots in a pentagonal
array (with a fixed corner) with n elements along the base.

Definition 79. A centered hexagonal number is a natural number H,, that counts the number of dots in a
hexagonal array (with a fixed center) with n elements along the base.
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Definition 80. A (real) elliptic curve is the solution set E in R? to an equation of the form y?> = x> +ax +b
Jor real constants a,b € R that satisfy the technical assumption that 4a® 4 27b2 # 0. For an elliptic curve E
we define E = E U {oo}, where oo is a formal symbol.

Definition 81. For an elliptic curve E, and points P,(Q) € E with P # (@), we set:

PY := the reflection of P over the x-axis
P % Q := RY, where R is the third point of intersection of the line between P and ) and E
Px P := 8", where S is the other point of intersection of the tangent line to E at P and E.

Theorem 82. There is a group structure on E with operation *, identity element 0o, and inverse —".
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Theorem 83. If E is a real elliptic curve given by the equation y* = x> + ax + b for rational numbers
a,b € Q, then the set of rational points on E (along with the infinity point “o0”) form a group with operation
x, identity element 0o, and inverse —". We denote this group by Ej.
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Definition 84. Let p > 5 be a prime. An elliptic curve over 7., is the solution set E, in 7., X Z,, to an equation
of the form y* = x® + [a|x + [b] for real constants [a], [b] € Z, that satisfy the technical assumption that
[4][a)?® + [27][b]* # 0. For an elliptic curve E, we define E, = E, U {co}, where oo is a formal symbol.

Theorem 85. There is a group structure on Ep with operation x, identity element oo, and inverse —" given
by the same geometric rules as in the real case.



