Sums of SQuARES

Recall:

THEOREM (QR PART -1): For p an odd prime, -1 is a square in \mathbb{Z}_{p} if and only if $p \equiv 1$ $(\bmod 4)$.

THEOREM: An odd prime is a sum of two squares if and only if it is congruent to 1 modulo 4.
(1) Express 37,41 , and 53 as sums of two squares.

$$
37=1^{2}+6^{2}, 41=5^{2}+4^{2}, 53=7^{2}+2^{2}
$$

(2) Show that every square and that every even prime is a sum of two squares.

$$
n^{2}=n^{2}+0^{2}, 2=1^{2}+1^{2}
$$

(3) Show ${ }^{1}$ the "only if" direction in the theorem above.

The squares in \mathbb{Z}_{4} are $[0]$ and [1], so a number that is a sum of two squares cannot be congruent to 3 modulo 4 .
(4) Proof of "if" direction:
(a) Explain why there is some natural number r with $r^{2} \equiv-1(\bmod p)$.
(b) Let $k=\lfloor\sqrt{p}\rfloor$ and $S=\{0,1, \ldots, k\}$. Explain why the function

$$
\begin{aligned}
f: S \times S & \rightarrow \mathbb{Z}_{p} \\
(u, v) & \mapsto[u+r v]
\end{aligned}
$$

must ${ }^{2}$ admit two input pairs $\left(u_{1}, v_{1}\right) \neq\left(u_{2}, v_{2}\right)$ such that $f\left(u_{1}, v_{1}\right)=f\left(u_{2}, v_{2}\right)$.
(c) Show that $a=u_{1}-u_{2}$ and $b=v_{1}-v_{2}$ satisfy $a^{2}+b^{2}=p$.
(a) By QR part -1 , we can write $[-1]=[r]^{2}$ for some $[r] \in \mathbb{Z}_{p}$, so $r^{2} \equiv-1$ $(\bmod p)$.
(b) Note that the source of f has $(k+1)^{2}$ elements and the target has p elements. Since $k \geq \sqrt{p}, k+1>\sqrt{p}$, so $(k+1)^{2}>p$. Thus, f cannot be injective, which yields the statement.
(c) We have $u_{1}+r v_{1} \equiv u_{2}+r v_{2}(\bmod p)$, so $u_{1}-u_{2} \equiv-r\left(v_{1}-v_{2}\right)(\bmod p)$. Then

$$
a^{2}+b^{2} \equiv\left(u_{1}-u_{2}\right)^{2}+\left(v_{1}-v_{2}\right)^{2} \equiv\left(u_{1}-u_{2}\right)^{2}+r^{2}\left(u_{1}-u_{2}\right)^{2} \equiv\left(u_{1}-u_{2}\right)^{2}-\left(u_{1}-u_{2}\right)^{2} \equiv 0 \quad(\bmod p) .
$$

[^0]$$
\text { Also, } a^{2}+b^{2} \neq 0 \text {, since either } u_{1}-u_{2} \neq 0 \text { or } v_{1}-v_{2} \neq 0, \text { and } a^{2}+b^{2} \leq
$$ $2 k^{2}<2 \sqrt{p}^{2}=2 p$. We must have $a^{2}+b^{2}=p$.

Sums of Two Squares Theorem: A positive integer n is a sum of two squares if and only if: for every prime p such that $p \equiv 3(\bmod 4)$ and p divides n, the multiplicity of p in the prime factorization of n is even.
(5) Proof of Sums of Two Squares Theorem:
(a) Show ${ }^{3}$ that if $q \equiv 3(\bmod 4)$ is prime and divides $n=a^{2}+b^{2}$, then q divides a and q divides b. Conclude that q^{2} divides n in this case.
(b) Use the formula $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2}$ to explain why any product of numbers that are sums of two squares is itself a sum of two squares.
(c) Complete the proof of the Theorem.
(a) Suppose $n=a^{2}+b^{2}, q \mid n$, and $q \nmid a$. Then $a^{2}+b^{2} \equiv 0(\bmod q)$, and $b^{2} \equiv-a^{2}(\bmod q)$, and $[a]^{-1}[b]=[-1]$ in \mathbb{Z}_{p}. This, -1 is a square, so by QR part $-1, q \equiv 1(\bmod 4)$. Thus, if $q \mid n$ and $q \equiv 3(\bmod 4)$ then $q \mid a$. By switching roles, $q \mid b$ as well. But if $q \mid a$, then $q^{2} \mid a^{2}$, so $q^{2} \mid b^{2}$, and hence $q^{2} \mid\left(a^{2}+b^{2}\right)$.
(b) Read it from left to right.
(c) Write $n=2^{a} p_{1}^{e_{1}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} \cdots q_{\ell}^{f_{\ell}}$, with $p_{i} \equiv 1(\bmod 4)$ and $q_{i} \equiv 3$ $(\bmod 4)$.
(\Leftarrow) : If each ℓ_{i} is even, then $q_{1}^{f_{1}} \cdots q_{\ell}^{f_{\ell}}$ is a square, hence a sum of two squares. Then since $2, p_{1}, \ldots, p_{k}$ are sums of two squares, by part (2), n is a sum of two squares.
(\Rightarrow) : Given $n=a^{2}+b^{2}$, we need to show that each ℓ_{i} is even. We proceed by strong induction on n (with $n=2$ as a base case). By part (1), we can write $n=q_{i}^{2} n^{\prime}$ and $n=a^{2}+b^{2}=\left(q_{i} a^{\prime}\right)^{2}+\left(q_{i} b^{\prime}\right)^{2}$. Thus, $n^{\prime}=a^{\prime 2}+b^{\prime 2}$. By the induction hypothesis, the multiplicity of q_{i} in n^{\prime} is even, say $2 w$; then $\ell_{i}=2 w+2$ is even. This completes the induction.

[^1]
SUMS OF FOUR SQUARES THEOREM: Every positive integer n is a sum of four squares.

(5) Proof of Sums of Four Squares Theorem:
(a) Use the formula

$$
\begin{aligned}
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(e^{2}+f^{2}+g^{2}+h^{2}\right)=(a e+b f & +c g+d h)^{2}+(a f-b e+c h-d g)^{2} \\
& +(a g-b h-c e+d f)^{2}+(a h+b g-c f-d e)^{2}
\end{aligned}
$$

to conclude that a product of sums of four squares is a sum of four squares. In particular, it suffices to show that every prime is a sum of four squares.
(b) Show ${ }^{4}$ that if p is an odd prime, then there are integers x and y such that $x^{2}+y^{2} \equiv$ $-1(\bmod p)$ and $0 \leq x, y<p / 2$. Deduce that for some $k<p$ we can write $k p$ as a sum of three (and hence four) squares.
(c) Let p be an odd prime. Suppose that the smallest $p>0$ such that $k p$ is a sum of four squares is greater than one. First, if k is even and $k p=a^{2}+b^{2}+c^{2}+d^{2}$, explain why we can rearrange so that $a \equiv b(\bmod 2)$ and $c \equiv d(\bmod 2)$. Then show that

$$
\frac{k}{2} p=\left(\frac{a-b}{2}\right)^{2}+\left(\frac{a+b}{2}\right)^{2}+\left(\frac{c-d}{2}\right)^{2}+\left(\frac{c+d}{2}\right)^{2}
$$

and deduce that k is odd.
(d) Continuing the case where p is odd, $k p=a^{2}+b^{2}+c^{2}+d^{2}$ with k minimal and odd, suppose that $k>1$. Take $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ such that $a^{\prime} \equiv a(\bmod k)$ and $-m / 2<a^{\prime}<m / 2$, and likewise with the others. Explain why $a^{\prime 2}+b^{\prime 2}+c^{\prime 2}+$ $d^{2}=k r$ for some $r<k$.
(e) Continuing the previous part, use the identity from part (a) to write $(k p)(k r)$ as a sum of four squares, and show that each of numbers whose squares appear is a multiple of k. Deduce that $p r$ is a sum of four squares, contradicting the hypothesis that $k>1$. This concludes the proof.

[^2]
[^0]: ${ }^{1}$ What did we do in HW\#1?
 ${ }^{2}$ Hint: $k+1>\sqrt{p}$.

[^1]: ${ }^{3}$ If $q \vee a$, show that $[b] /[a]$ is a square root of -1 .

[^2]: ${ }^{4}$ Hint: Show that for the sets $S=\left\{0^{2} 1^{2}, \ldots,\left(\frac{p-1}{2}\right)^{2}\right\}$ and $T=\left\{-1-0^{2}-1-1^{2}, \ldots,-1-\left(\frac{p-1}{2}\right)^{2}\right\}$ there are $s \in S$ and $t \in T$ that are congruent modulo p.

