```
Recall:
```

```
THEOREM (QR PART -1): For p an odd prime, -1 is a square in \mathbb{Z}_p if and only if p \equiv 1 \pmod{4}.
```

THEOREM: An odd prime is a sum of two squares if and only if it is congruent to 1 modulo 4.

(1) Express 37, 41, and 53 as sums of two squares.

 $37 = 1^2 + 6^2, 41 = 5^2 + 4^2, 53 = 7^2 + 2^2$

(2) Show that every square and that every even prime is a sum of two squares.

 $n^2 = n^2 + 0^2, 2 = 1^2 + 1^2$

(3) Show¹ the "only if" direction in the theorem above.

The squares in \mathbb{Z}_4 are [0] and [1], so a number that is a sum of two squares cannot be congruent to 3 modulo 4.

(4) Proof of "if" direction:

- (a) Explain why there is some natural number r with $r^2 \equiv -1 \pmod{p}$.
- (b) Let $k = \lfloor \sqrt{p} \rfloor$ and $S = \{0, 1, \dots, k\}$. Explain why the function

$$f: S \times S \to \mathbb{Z}_p$$
$$(u, v) \mapsto [u + rv]$$

must² admit two input pairs $(u_1, v_1) \neq (u_2, v_2)$ such that $f(u_1, v_1) = f(u_2, v_2)$. (c) Show that $a = u_1 - u_2$ and $b = v_1 - v_2$ satisfy $a^2 + b^2 = p$.

- (a) By QR part -1, we can write $[-1] = [r]^2$ for some $[r] \in \mathbb{Z}_p$, so $r^2 \equiv -1 \pmod{p}$.
- (b) Note that the source of f has $(k+1)^2$ elements and the target has p elements. Since $k \ge \sqrt{p}$, $k+1 > \sqrt{p}$, so $(k+1)^2 > p$. Thus, f cannot be injective, which yields the statement.
- (c) We have $u_1 + rv_1 \equiv u_2 + rv_2 \pmod{p}$, so $u_1 u_2 \equiv -r(v_1 v_2) \pmod{p}$. Then

$$a^{2}+b^{2} \equiv (u_{1}-u_{2})^{2}+(v_{1}-v_{2})^{2} \equiv (u_{1}-u_{2})^{2}+r^{2}(u_{1}-u_{2})^{2} \equiv (u_{1}-u_{2})^{2}-(u_{1}-u_{2})^{2} \equiv 0 \pmod{p}.$$

²Hint: $k + 1 > \sqrt{p}$.

¹What did we do in HW#1?

Also, $a^2 + b^2 \neq 0$, since either $u_1 - u_2 \neq 0$ or $v_1 - v_2 \neq 0$, and $a^2 + b^2 \leq 2k^2 < 2\sqrt{p}^2 = 2p$. We must have $a^2 + b^2 = p$.

SUMS OF TWO SQUARES THEOREM: A positive integer n is a sum of two squares if and only if: for every prime p such that $p \equiv 3 \pmod{4}$ and p divides n, the multiplicity of p in the prime factorization of n is even.

- (5) Proof of Sums of Two Squares Theorem:
 - (a) Show³ that if $q \equiv 3 \pmod{4}$ is prime and divides $n = a^2 + b^2$, then q divides a and q divides b. Conclude that q^2 divides n in this case.
 - (b) Use the formula $(a^2 + b^2)(c^2 + d^2) = (ac bd)^2 + (ad + bc)^2$ to explain why any product of numbers that are sums of two squares is itself a sum of two squares.
 - (c) Complete the proof of the Theorem.
 - (a) Suppose $n = a^2 + b^2$, q|n, and $q \nmid a$. Then $a^2 + b^2 \equiv 0 \pmod{q}$, and $b^2 \equiv -a^2 \pmod{q}$, and $[a]^{-1}[b] = [-1]$ in \mathbb{Z}_p . This, -1 is a square, so by QR part -1, $q \equiv 1 \pmod{4}$. Thus, if q|n and $q \equiv 3 \pmod{4}$ then q|a. By switching roles, q|b as well. But if q|a, then $q^2|a^2$, so $q^2|b^2$, and hence $q^2|(a^2 + b^2)$.
 - (b) Read it from left to right.
 - (c) Write $n = 2^a p_1^{e_1} \cdots p_k^{e_k} q_1^{f_1} \cdots q_\ell^{f_\ell}$, with $p_i \equiv 1 \pmod{4}$ and $q_i \equiv 3 \pmod{4}$.

 (\Leftarrow) : If each ℓ_i is even, then $q_1^{f_1} \cdots q_\ell^{f_\ell}$ is a square, hence a sum of two squares. Then since $2, p_1, \ldots, p_k$ are sums of two squares, by part (2), n is a sum of two squares.

 (\Rightarrow) : Given $n = a^2 + b^2$, we need to show that each ℓ_i is even. We proceed by strong induction on n (with n = 2 as a base case). By part (1), we can write $n = q_i^2 n'$ and $n = a^2 + b^2 = (q_i a')^2 + (q_i b')^2$. Thus, $n' = a'^2 + b'^2$. By the induction hypothesis, the multiplicity of q_i in n' is even, say 2w; then $\ell_i = 2w + 2$ is even. This completes the induction.

³If $q \mid a$, show that [b]/[a] is a square root of -1.

SUMS OF FOUR SQUARES THEOREM: Every positive integer n is a sum of four squares.

(5) Proof of Sums of Four Squares Theorem:(a) Use the formula

$$(a^{2} + b^{2} + c^{2} + d^{2})(e^{2} + f^{2} + g^{2} + h^{2}) = (ae + bf + cg + dh)^{2} + (af - be + ch - dg)^{2} + (ag - bh - ce + df)^{2} + (ah + bg - cf - de)^{2}$$

to conclude that a product of sums of four squares is a sum of four squares. In particular, it suffices to show that every prime is a sum of four squares.

- (b) Show⁴ that if p is an odd prime, then there are integers x and y such that $x^2+y^2 \equiv -1 \pmod{p}$ and $0 \leq x, y < p/2$. Deduce that for some k < p we can write kp as a sum of three (and hence four) squares.
- (c) Let p be an odd prime. Suppose that the smallest p > 0 such that kp is a sum of four squares is greater than one. First, if k is even and $kp = a^2 + b^2 + c^2 + d^2$, explain why we can rearrange so that $a \equiv b \pmod{2}$ and $c \equiv d \pmod{2}$. Then show that

$$\frac{k}{2}p = \left(\frac{a-b}{2}\right)^2 + \left(\frac{a+b}{2}\right)^2 + \left(\frac{c-d}{2}\right)^2 + \left(\frac{c+d}{2}\right)^2$$

and deduce that k is odd.

- (d) Continuing the case where p is odd, $kp = a^2 + b^2 + c^2 + d^2$ with k minimal and odd, suppose that k > 1. Take a', b', c', d' such that $a' \equiv a \pmod{k}$ and -m/2 < a' < m/2, and likewise with the others. Explain why $a'^2 + b'^2 + c'^2 + d'^2 = kr$ for some r < k.
- (e) Continuing the previous part, use the identity from part (a) to write (kp)(kr) as a sum of four squares, and show that each of numbers whose squares appear is a multiple of k. Deduce that pr is a sum of four squares, contradicting the hypothesis that k > 1. This concludes the proof.

⁴Hint: Show that for the sets $S = \{0^2 1^2, \dots, (\frac{p-1}{2})^2\}$ and $T = \{-1 - 0^2 - 1 - 1^2, \dots, -1 - (\frac{p-1}{2})^2\}$ there are $s \in S$ and $t \in T$ that are congruent modulo p.