SUMS OF SQUARES

Recall:
THEOREM (QR PART —1): For p an odd prime, —1 is a square in Z,, if and only if p = 1
(mod 4).

THEOREM: An odd prime is a sum of two squares if and only if it is congruent to 1
modulo 4.

(1) Express 37,41, and 53 as sums of two squares.
(2) Show that every square and that every even prime is a sum of two squares.
(3) Show' the “only if” direction in the theorem above.

(4) Proof of “if” direction:

(a) Explain why there is some natural number r with 7> = —1 (mod p).
(b) Letk = [/p] and S = {0,1, ..., k}. Explain why the function
f:Sx8—=17Z,

(u,v) = [u+ rv]

must’ admit two input pairs (u1, v1) # (ug, vo) such that f(u1,vy) = f(ug,vs).
(c) Show that @ = u; — uy and b = v; — vy satisfy a® + b = p.

SUMS OF TWO SQUARES THEOREM: A positive integer n is a sum of two squares if
and only if: for every prime p such that p = 3 (mod 4) and p divides n, the multiplicity
of p in the prime factorization of n is even.

(5) Proof of Sums of Two Squares Theorem:
(a) Show? thatif ¢ = 3 (mod 4) is prime and divides n = a® + b?, then ¢ divides a
and ¢ divides b. Conclude that ¢? divides n in this case.
(b) Use the formula (a®+b%)(c? 4+ d?) = (ac — bd)? + (ad + bc)? to explain why any
product of numbers that are sums of two squares is itself a sum of two squares.
(c) Complete the proof of the Theorem.

'What did we do in HW#1?
Hint: k+1 > \/p.
31f q |/a, show that [b]/[a] is a square root of —1.



SUMS OF FOUR SQUARES THEOREM: Every positive integer n is a sum of four squares.

(5) Proof of Sums of Four Squares Theorem:
(a) Use the formula

(a®> +0* +E+d) (P + 2+ g* + h?) = (aet+bf +cg + dh)* + (af — be + ch — dg)?
+ (ag — bh — ce + df)* + (ah + bg — cf — de)?

to conclude that a product of sums of four squares is a sum of four squares. In
particular, it suffices to show that every prime is a sum of four squares.

(b) Show* that if p is an odd prime, then there are integers x and y such that 22+ =
—1 (mod p) and 0 < x,y < p/2. Deduce that for some k < p we can write kp
as a sum of three (and hence four) squares.

(c) Let p be an odd prime. Suppose that the smallest p > 0 such that kp is a sum of
four squares is greater than one. First, if % is even and kp = a® + b? + ¢ + d?,
explain why we can rearrange so that a = b (mod 2) and ¢ = d (mod 2). Then

show that
k a—b\> [a+b\® [c—d\® [c+d\’
»=(57) (%) +(5) + (%)
and deduce that £ is odd.

(d) Continuing the case where p is odd, kp = a? + b? + ¢ + d? with k& minimal
and odd, suppose that & > 1. Take o', V', ¢, d such that ' = a (mod k) and
—m/2 < a’ < m/2, and likewise with the others. Explain why a'? + b'? + ¢? +
d"”* = kr for some r < k.

(e) Continuing the previous part, use the identity from part (a) to write (kp)(kr)
as a sum of four squares, and show that each of numbers whose squares appear
is a multiple of k. Deduce that pr is a sum of four squares, contradicting the
hypothesis that £ > 1. This concludes the proof.

“Hint: Show that for the sets S = {0212,..., (253 and T = {-1-0%—1—1%,..., -1 — (21)%}
there are s € S and t € T that are congruent modulo p.



