
SUMS OF SQUARES

Recall:
THEOREM (QR PART −1): For p an odd prime,−1 is a square in Zp if and only if p ≡ 1
(mod 4).

THEOREM: An odd prime is a sum of two squares if and only if it is congruent to 1
modulo 4.

(1) Express 37, 41, and 53 as sums of two squares.

(2) Show that every square and that every even prime is a sum of two squares.

(3) Show1 the “only if” direction in the theorem above.

(4) Proof of “if” direction:
(a) Explain why there is some natural number r with r2 ≡ −1 (mod p).
(b) Let k = b√pc and S = {0, 1, . . . , k}. Explain why the function

f : S × S → Zp

(u, v) 7→ [u+ rv]

must2 admit two input pairs (u1, v1) 6= (u2, v2) such that f(u1, v1) = f(u2, v2).
(c) Show that a = u1 − u2 and b = v1 − v2 satisfy a2 + b2 = p.

SUMS OF TWO SQUARES THEOREM: A positive integer n is a sum of two squares if
and only if: for every prime p such that p ≡ 3 (mod 4) and p divides n, the multiplicity
of p in the prime factorization of n is even.

(5) Proof of Sums of Two Squares Theorem:
(a) Show3 that if q ≡ 3 (mod 4) is prime and divides n = a2 + b2, then q divides a

and q divides b. Conclude that q2 divides n in this case.
(b) Use the formula (a2+ b2)(c2+d2) = (ac− bd)2+(ad+ bc)2 to explain why any

product of numbers that are sums of two squares is itself a sum of two squares.
(c) Complete the proof of the Theorem.

1What did we do in HW#1?
2Hint: k + 1 >

√
p.

3If q 6| a, show that [b]/[a] is a square root of −1.



SUMS OF FOUR SQUARES THEOREM: Every positive integer n is a sum of four squares.

(5) Proof of Sums of Four Squares Theorem:
(a) Use the formula

(a2 + b2 + c2 + d2)(e2 + f 2 + g2 + h2) = (ae+bf + cg + dh)2 + (af − be+ ch− dg)2

+ (ag − bh− ce+ df)2 + (ah+ bg − cf − de)2

to conclude that a product of sums of four squares is a sum of four squares. In
particular, it suffices to show that every prime is a sum of four squares.

(b) Show4 that if p is an odd prime, then there are integers x and y such that x2+y2 ≡
−1 (mod p) and 0 ≤ x, y < p/2. Deduce that for some k < p we can write kp
as a sum of three (and hence four) squares.

(c) Let p be an odd prime. Suppose that the smallest p > 0 such that kp is a sum of
four squares is greater than one. First, if k is even and kp = a2 + b2 + c2 + d2,
explain why we can rearrange so that a ≡ b (mod 2) and c ≡ d (mod 2). Then
show that
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and deduce that k is odd.
(d) Continuing the case where p is odd, kp = a2 + b2 + c2 + d2 with k minimal

and odd, suppose that k > 1. Take a′, b′, c′, d′ such that a′ ≡ a (mod k) and
−m/2 < a′ < m/2, and likewise with the others. Explain why a′2 + b′2 + c′2 +
d′2 = kr for some r < k.

(e) Continuing the previous part, use the identity from part (a) to write (kp)(kr)
as a sum of four squares, and show that each of numbers whose squares appear
is a multiple of k. Deduce that pr is a sum of four squares, contradicting the
hypothesis that k > 1. This concludes the proof.

4Hint: Show that for the sets S = {0212, . . . , (p−1
2 )2} and T = {−1 − 02 − 1 − 12, . . . ,−1 − (p−1

2 )2}
there are s ∈ S and t ∈ T that are congruent modulo p.


