
PRIMES IN ARITHMETIC PROGRESSIONS

THEOREM (EUCLID): There are infinitely many primes.

(1) Prove Euclid’s Theorem as follows:
By way of contradiction, suppose that there are only finitely many primes p1, . . . , pk. Con-
sider the number N = p1p2 · · · pk + 1 and derive a contradiction. (Warning: the contradic-
tion is not that N must be prime!)

By way of contradiction, suppose that there are only finitely many primes p1, . . . , pk.
Consider the number N = p1p2 · · · pk+1. This number N is multiple of some prime p.
By hypothesis, p = pi for some i. But N ≡ 1 (mod pi) for each i, so N is not
a multiple of pi, which is a contradiction. We conclude that there must be infinitely
many primes.

(2) Modify1 Euclid’s argument to show that there are infinitely many primes p such that p ≡ 3
(mod 4).

By way of contradiction, suppose that there are only finitely many primes p1, . . . , pk
that are congruent to 3 (mod 4). Consider the number N = 4p1p2 · · · pk − 1.

We claim that N is divisible by some prime that is congruent to 3 modulo 4. Since
N is odd, it is a product of odd primes; in particular, each prime factor is congruent to 1
or 3 modulo 4. If each factor is congruent to 1, then their product is congruent to 1, but
N ≡ 3 (mod 4). Thus, N is divisible by some prime that is congruent to 3 modulo 4.

Thus, N is divisible by pi for some i. But N ≡ −1 (mod pi), so N is not a multiple
of pi. This is a contradiction. We conclude that there must be infinitely many primes
that are congruent to 3 modulo 4.

Alternatively, by way of contradiction, suppose that there are only finitely many
primes p1, . . . , pk that are congruent to 3 (mod 4). Say that we ordered them so that
p1 = 3. Consider the number N = 4p2p3 · · · pk + 3.

We claim that N is divisible by some prime that is congruent to 3 modulo 4. Since
N is odd, it is a product of odd primes; in particular, each prime factor is congruent to 1
or 3 modulo 4. If each factor is congruent to 1, then their product is congruent to 1, but
N ≡ 3 (mod 4). Thus, N is divisible by some prime that is congruent to 3 modulo 4.

Thus, N is divisible by pi for some i. Note that 3 - N , since 3|3 but 3 - (4p2p3 · · · pk).
But for i > 1, N ≡ −1 (mod pi), so N is not a multiple of pi either. This is a
contradiction. We conclude that there must be infinitely many primes that are congruent
to 3 modulo 4.

(3) Extending your argument from (2):
(a) Explain why your method from (2) cannot be used in the same way to show that there

are infinitely many primes p such that p ≡ 1 (mod 4).
(b) For which classes [a] ∈ Z×

3 can your argument from (2) be modified to show that there
are infinitely many primes congruent to a modulo 3? Complete these cases.

1Hint: Use a different formula for N that returns a number congruent to 3 modulo 4.



(c) For which classes [a] ∈ Z×
5 can your argument from (2) be used in the same way to

show that there are infinitely many primes congruent to a modulo 5?

(a) If we argue as in (2) and create some N that is equivalent to 1 modulo 4, it could
be a product of primes that are congruent to 3 modulo 4, as long as the total
multiplicity of 3 mod 4 factors is even.

(b) This works for 2 modulo 3. Proceed as in (2) and take N = 3p1 · · · pk − 1. The
argument works because if a product is 2 (mod 3), then one of the factors has to
be 2 (mod 3). This can’t work for 1 modulo 3 since a product of things that all
aren’t 1 (mod 3) can be 1 (mod 3).

(c) This can’t work for any residue class modulo 5, because no matter what nonzero
[a] we take, we can write [a] = [b1] · · · [bk] where all [bi] 6= [a]. For example,

[1] = [4][4], [2] = [3][4], [3] = [2][2][2], [4] = [3][3].

(4) In this problem we will show that there are infinitely many primes congruent to 1 modulo 4:
If there are only finitely many p1, . . . , pk, consider N = 4(p1 · · · pk)2 +1. Show that if q is
a prime factor of N then −1 is a quadratic residue modulo N , and conclude the proof.

By way of contradiction, suppose that there are only finitely many primes p1, . . . , pk
that are congruent to 1 (mod 4). Consider the number N = 4(p1 · · · pk)2 + 1.

The number N has some prime factor p. Observe that −1 = 4(p1 · · · pk)2 −N , so

−1 ≡ (2p1 · · · pk)2 (mod p).

Thus
(

−1
p

)
= 1, which implies that p ≡ 1 (mod 4) by quardatic reciprocity part −1.

But then p = pi for some i, and N ≡ 1 (mod pi), which yields a contradiction. We
conclude that there must be infinitely many primes that are congruent to 1 modulo 4.

(5) Show that there are infinitely many primes congruent to 1 modulo 3.
Hint: Consider N = 3(p1 · · · pk)2 + 1, and note that [a]−1 is a square if and only if [a] is a
square.

By way of contradiction, suppose that there are only finitely many primes p1, . . . , pk
that are congruent to 1 (mod 3). Consider the number N = 3(p1 · · · pk)2 + 1.

The number N has some prime factor p. Observe that −1 = 3(p1 · · · pk)2 −N , so

−1 ≡ 3(p1 · · · pk)2 (mod p).

1/(−3) ≡ (p1 · · · pk)2 (mod p).

Thus
(

−3
p

)
= 1. We compute(
−3
p

)
=

(
−1
p

)(
3

p

)
=

{
1 ·
(
p
3

)
if p ≡ 1 (mod 4)

−1 · −
(
p
3

)
if p ≡ 3 (mod 4)

=
(p
3

)
=

{
1 if p ≡ 1 (mod 3)

−1 if p ≡ 2 (mod 3).



which implies that p ≡ 1 (mod 3). But then p = pi for some i, and N ≡ 1 (mod pi),
which yields a contradiction. We conclude that there must be infinitely many primes
that are congruent to 1 modulo 3.

(6) Show that there are infinitely many primes congruent to 4 modulo 5.

Proceeding as above, if not, take N = 5(p1 · · · pk)2 − 1. Note that 5 - N . Then for a
prime p dividing N , we have that 5(p1 · · · pk)2 ≡ 1 (mod p) so

1 =

(
5

p

)
=
(p
5

)
,

and hence p ≡ ±1 (mod 5). But if every prime factor of N is congruent to 1, then
N ≡ 1 (mod 5) whereas N ≡ 4 (mod 5). Thus N has a prime factor congruent to 4
mod 5, but this is some pi leading to a contradiction.

(7) Show that there are infinitely many primes congruent modulo 8 to 7, to 5, and to 3.

Let’s start with p ≡ 7 (mod 8), proceed as above and take N = (4p1 · · · pk)2 − 2.
Note that N is not a multiple of 4, and must then have an odd prime factor. For p|N
odd, we have 2 ≡ (4p1 · · · pk)2 (mod p), so

(
2
p

)
= 1, and hence p ≡ 1, 7 (mod 8).

But not every prime factor of N is congruent to 1 modulo 8, since this would imply
N ≡ 1, 2, 4 (mod 8), but N ≡ 6 (mod 8). So some factor is congruent to 3 modulo
8, hence is some pi, leading to a contradiction.

Now p ≡ 3 (mod 8). Proceed as above and take N = (p1 · · · pk)2 + 2. Note that
each pi is odd, and N ≡ 3 (mod 8). For p|N , we have −2 ≡ (p1 · · · pk)2 (mod p).
We compute

(
−2
p

)
=

(
−1
p

)(
2

p

)
=


1 · 1 if p ≡ 1 (mod 8)

−1 · −1 if p ≡ 3 (mod 8)

1 · −1 if p ≡ 5 (mod 8)

−1 · 1 if p ≡ 7 (mod 8)

,

so p ≡ 1, 3 (mod 8). But not every prime factor of N is congruent to 1 modulo 8, so
some factor is congruent to 3 modulo 8, hence is some pi, leading to a contradiction.

For p ≡ 5 (mod 8), try your luck with N = (p1 · · · pk)2 + 4.

THEOREM* (DIRICHLET): If a and n are coprime integers, with n > 0, then there are infin-
itely many primes p such that p ≡ a (mod n).


