PRIMES IN ARITHMETIC PROGRESSIONS

THEOREM (EUCLID): There are infinitely many primes.
(1) Prove Euclid's Theorem as follows:

By way of contradiction, suppose that there are only finitely many primes p_{1}, \ldots, p_{k}. Consider the number $N=p_{1} p_{2} \cdots p_{k}+1$ and derive a contradiction. (Warning: the contradiction is not that N must be prime!)

By way of contradiction, suppose that there are only finitely many primes p_{1}, \ldots, p_{k}. Consider the number $N=p_{1} p_{2} \cdots p_{k}+1$. This number N is multiple of some prime p. By hypothesis, $p=p_{i}$ for some i. But $N \equiv 1\left(\bmod p_{i}\right)$ for each i, so N is not a multiple of p_{i}, which is a contradiction. We conclude that there must be infinitely many primes.
(2) Modify ${ }^{1}$ Euclid's argument to show that there are infinitely many primes p such that $p \equiv 3$ $(\bmod 4)$.

By way of contradiction, suppose that there are only finitely many primes p_{1}, \ldots, p_{k} that are congruent to $3(\bmod 4)$. Consider the number $N=4 p_{1} p_{2} \cdots p_{k}-1$.

We claim that N is divisible by some prime that is congruent to 3 modulo 4. Since N is odd, it is a product of odd primes; in particular, each prime factor is congruent to 1 or 3 modulo 4 . If each factor is congruent to 1 , then their product is congruent to 1 , but $N \equiv 3(\bmod 4)$. Thus, N is divisible by some prime that is congruent to 3 modulo 4.

Thus, N is divisible by p_{i} for some i. But $N \equiv-1\left(\bmod p_{i}\right)$, so N is not a multiple of p_{i}. This is a contradiction. We conclude that there must be infinitely many primes that are congruent to 3 modulo 4 .

Alternatively, by way of contradiction, suppose that there are only finitely many primes p_{1}, \ldots, p_{k} that are congruent to $3(\bmod 4)$. Say that we ordered them so that $p_{1}=3$. Consider the number $N=4 p_{2} p_{3} \cdots p_{k}+3$.

We claim that N is divisible by some prime that is congruent to 3 modulo 4 . Since N is odd, it is a product of odd primes; in particular, each prime factor is congruent to 1 or 3 modulo 4 . If each factor is congruent to 1 , then their product is congruent to 1 , but $N \equiv 3(\bmod 4)$. Thus, N is divisible by some prime that is congruent to 3 modulo 4.

Thus, N is divisible by p_{i} for some i. Note that $3 \nmid N$, since $3 \mid 3$ but $3 \nmid\left(4 p_{2} p_{3} \cdots p_{k}\right)$. But for $i>1, N \equiv-1\left(\bmod p_{i}\right)$, so N is not a multiple of p_{i} either. This is a contradiction. We conclude that there must be infinitely many primes that are congruent to 3 modulo 4 .
(3) Extending your argument from (2):
(a) Explain why your method from (2) cannot be used in the same way to show that there are infinitely many primes p such that $p \equiv 1(\bmod 4)$.
(b) For which classes $[a] \in \mathbb{Z}_{3}^{\times}$can your argument from (2) be modified to show that there are infinitely many primes congruent to a modulo 3? Complete these cases.

[^0](c) For which classes $[a] \in \mathbb{Z}_{5}^{\times}$can your argument from (2) be used in the same way to show that there are infinitely many primes congruent to a modulo 5 ?
(a) If we argue as in (2) and create some N that is equivalent to 1 modulo 4 , it could be a product of primes that are congruent to 3 modulo 4 , as long as the total multiplicity of $3 \bmod 4$ factors is even.
(b) This works for 2 modulo 3 . Proceed as in (2) and take $N=3 p_{1} \cdots p_{k}-1$. The argument works because if a product is $2(\bmod 3)$, then one of the factors has to be $2(\bmod 3)$. This can't work for 1 modulo 3 since a product of things that all aren't $1(\bmod 3)$ can be $1(\bmod 3)$.
(c) This can't work for any residue class modulo 5 , because no matter what nonzero $[a]$ we take, we can write $[a]=\left[b_{1}\right] \cdots\left[b_{k}\right]$ where all $\left[b_{i}\right] \neq[a]$. For example,
$$
[1]=[4][4],[2]=[3][4],[3]=[2][2][2],[4]=[3][3] .
$$
(4) In this problem we will show that there are infinitely many primes congruent to 1 modulo 4 : If there are only finitely many p_{1}, \ldots, p_{k}, consider $N=4\left(p_{1} \cdots p_{k}\right)^{2}+1$. Show that if q is a prime factor of N then -1 is a quadratic residue modulo N, and conclude the proof.

By way of contradiction, suppose that there are only finitely many primes p_{1}, \ldots, p_{k} that are congruent to $1(\bmod 4)$. Consider the number $N=4\left(p_{1} \cdots p_{k}\right)^{2}+1$.

The number N has some prime factor p. Observe that $-1=4\left(p_{1} \cdots p_{k}\right)^{2}-N$, so

$$
-1 \equiv\left(2 p_{1} \cdots p_{k}\right)^{2} \quad(\bmod p)
$$

Thus $\left(\frac{-1}{p}\right)=1$, which implies that $p \equiv 1(\bmod 4)$ by quardatic reciprocity part -1 . But then $p=p_{i}$ for some i, and $N \equiv 1\left(\bmod p_{i}\right)$, which yields a contradiction. We conclude that there must be infinitely many primes that are congruent to 1 modulo 4 .
(5) Show that there are infinitely many primes congruent to 1 modulo 3.

Hint: Consider $N=3\left(p_{1} \cdots p_{k}\right)^{2}+1$, and note that $[a]^{-1}$ is a square if and only if $[a]$ is a square.

By way of contradiction, suppose that there are only finitely many primes p_{1}, \ldots, p_{k} that are congruent to $1(\bmod 3)$. Consider the number $N=3\left(p_{1} \cdots p_{k}\right)^{2}+1$.

The number N has some prime factor p. Observe that $-1=3\left(p_{1} \cdots p_{k}\right)^{2}-N$, so

$$
\begin{gathered}
-1 \equiv 3\left(p_{1} \cdots p_{k}\right)^{2} \quad(\bmod p) \\
1 /(-3) \equiv\left(p_{1} \cdots p_{k}\right)^{2} \quad(\bmod p)
\end{gathered}
$$

Thus $\left(\frac{-3}{p}\right)=1$. We compute

$$
\begin{aligned}
\left(\frac{-3}{p}\right) & =\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=\left\{\begin{array}{lll}
1 \cdot\left(\frac{p}{3}\right) & \text { if } p \equiv 1 & (\bmod 4) \\
-1 \cdot-\left(\frac{p}{3}\right) & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right. \\
& =\left(\frac{p}{3}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 & (\bmod 3) \\
-1 & \text { if } p \equiv 2 & (\bmod 3) .
\end{array}\right.
\end{aligned}
$$

which implies that $p \equiv 1(\bmod 3)$. But then $p=p_{i}$ for some i, and $N \equiv 1\left(\bmod p_{i}\right)$, which yields a contradiction. We conclude that there must be infinitely many primes that are congruent to 1 modulo 3.
(6) Show that there are infinitely many primes congruent to 4 modulo 5 .

Proceeding as above, if not, take $N=5\left(p_{1} \cdots p_{k}\right)^{2}-1$. Note that $5 \nmid N$. Then for a prime p dividing N, we have that $5\left(p_{1} \cdots p_{k}\right)^{2} \equiv 1(\bmod p)$ so

$$
1=\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)
$$

and hence $p \equiv \pm 1(\bmod 5)$. But if every prime factor of N is congruent to 1 , then $N \equiv 1(\bmod 5)$ whereas $N \equiv 4(\bmod 5)$. Thus N has a prime factor congruent to 4 $\bmod 5$, but this is some p_{i} leading to a contradiction.
(7) Show that there are infinitely many primes congruent modulo 8 to 7 , to 5 , and to 3 .

Let's start with $p \equiv 7(\bmod 8)$, proceed as above and take $N=\left(4 p_{1} \cdots p_{k}\right)^{2}-2$. Note that N is not a multiple of 4 , and must then have an odd prime factor. For $p \mid N$ odd, we have $2 \equiv\left(4 p_{1} \cdots p_{k}\right)^{2}(\bmod p)$, so $\left(\frac{2}{p}\right)=1$, and hence $p \equiv 1,7(\bmod 8)$. But not every prime factor of N is congruent to 1 modulo 8 , since this would imply $N \equiv 1,2,4(\bmod 8)$, but $N \equiv 6(\bmod 8)$. So some factor is congruent to 3 modulo 8 , hence is some p_{i}, leading to a contradiction.
Now $p \equiv 3(\bmod 8)$. Proceed as above and take $N=\left(p_{1} \cdots p_{k}\right)^{2}+2$. Note that each p_{i} is odd, and $N \equiv 3(\bmod 8)$. For $p \mid N$, we have $-2 \equiv\left(p_{1} \cdots p_{k}\right)^{2}(\bmod p)$. We compute

$$
\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)=\left\{\begin{array}{lll}
1 \cdot 1 & \text { if } p \equiv 1 & (\bmod 8) \\
-1 \cdot-1 & \text { if } p \equiv 3 & (\bmod 8) \\
1 \cdot-1 & \text { if } p \equiv 5 & (\bmod 8) \\
-1 \cdot 1 & \text { if } p \equiv 7 & (\bmod 8)
\end{array},\right.
$$

so $p \equiv 1,3(\bmod 8)$. But not every prime factor of N is congruent to 1 modulo 8 , so some factor is congruent to 3 modulo 8 , hence is some p_{i}, leading to a contradiction.

For $p \equiv 5(\bmod 8)$, try your luck with $N=\left(p_{1} \cdots p_{k}\right)^{2}+4$.

THEOREM* (DIRICHLET): If a and n are coprime integers, with $n>0$, then there are infinitely many primes p such that $p \equiv a(\bmod n)$.

[^0]: ${ }^{1}$ Hint: Use a different formula for N that returns a number congruent to 3 modulo 4 .

