PRIMES IN ARITHMETIC PROGRESSIONS

THEOREM (EUCLID): There are infinitely many primes.
(1) Prove Euclid's Theorem as follows:

By way of contradiction, suppose that there are only finitely many primes p_{1}, \ldots, p_{k}. Consider the number $N=p_{1} p_{2} \cdots p_{k}+1$ and derive a contradiction. (Warning: the contradiction is not that N must be prime!)
(2) Modify ${ }^{1}$ Euclid's argument to show that there are infinitely many primes p such that $p \equiv 3$ $(\bmod 4)$.
(3) Extending your argument from (2):
(a) Explain why your method from (2) cannot be used in the same way to show that there are infinitely many primes p such that $p \equiv 1(\bmod 4)$.
(b) For which classes $[a] \in \mathbb{Z}_{3}^{\times}$can your argument from (2) be modified to show that there are infinitely many primes congruent to a modulo 3 ? Complete these cases.
(c) For which classes $[a] \in \mathbb{Z}_{5}^{\times}$can your argument from (2) be used in the same way to show that there are infinitely many primes congruent to a modulo 5 ?
(4) In this problem we will show that there are infinitely many primes congruent to 1 modulo 4 : If there are only finitely many p_{1}, \ldots, p_{k}, consider $N=4\left(p_{1} \cdots p_{k}\right)^{2}+1$. Show that if q is a prime factor of N then -1 is a quadratic residue modulo N, and conclude the proof.
(5) Show that there are infinitely many primes congruent to 1 modulo 3.

Hint: Consider $N=3\left(p_{1} \cdots p_{k}\right)^{2}+1$, and note that $[a]^{-1}$ is a square if and only if $[a]$ is a square.
(6) Show that there are infinitely many primes congruent to 4 modulo 5 .
(7) Show that there are infinitely many primes congruent modulo 8 to 7 , to 5 , and to 3 .

THEOREM* (DIRICHLET): If a and n are coprime integers, with $n>0$, then there are infinitely many primes p such that $p \equiv a(\bmod n)$.

[^0]
[^0]: ${ }^{1}$ Hint: Use a different formula for N that returns a number congruent to 3 modulo 4 .

