
QUADRATIC RECIPROCITY

From last time:

DEFINITION: Let p be an odd prime. For r ∈ Z not a multiple of p we define the Legendre
symbol of r with respect to p as(

r

p

)
=

{
1 if [r] is a square in Zp,
−1 if [r] is a not square in Zp.

PROPOSITION: Let p be an odd prime and a, b integers not divisible by p. Then

(1) a ≡ b (mod p) implies that
(
a

p

)
=

(
b

p

)
.

(2)
(
ab

p

)
=

(
a

p

)(
b

p

)
.

(3)
(
a2

p

)
= 1. �

THEOREM (QUADRATIC RECIPROCITY): Let p and q be distinct odd primes. Then(
p

q

)
=

(
q

p

)
if either p ≡ 1 (mod 4) or q ≡ 1 (mod 4),(

p

q

)
= −

(
q

p

)
if both p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

THEOREM (QUADRATIC RECIPROCITY PART 2): Let p be an odd prime. Then(
2

p

)
= 1 if p ≡ ±1 (mod 8),(

2

p

)
= −1 if p ≡ ±3 (mod 8).

(1) Computing quadratic residues with QR & QR part 2:
(a) Compute

(
2
7

)
,
(

2
11

)
, and

(
2

101

)
.

(b) What does QR say about
(
3
7

)
? Simplify the new Legendre symbol and evaluate.

(c) Apply the same strategy as the previous part to compute
(

13
107

)
.

(a)
(
2
7

)
= 1,

(
2
11

)
= −1, and

(
2

101

)
= −1.

(b)
(
3
7

)
= −

(
7
3

)
= −

(
1
3

)
= −1.

(c)
(

13
107

)
=
(
107
13

)
=
(

3
13

)
=
(
13
3

)
=
(
1
3

)
= 1.

(2) Computing quadratic residues QR, QR part 2, and the proposition:
(a) Compute

(
10
13

)
by starting with Proposition part (2), then continuing as in the previous

problem.



(b) Compute
(

38
127

)
.

(a)
(
10
13

)
=
(

2
13

) (
5
13

)
= −1 ·

(
13
5

)
= −1 ·

(
3
5

)
= −1 ·

(
5
3

)
= −1 ·

(
2
3

)
= −1 · −1 = 1.

(b)
(

38
127

)
=
(

2
127

) (
19
127

)
= 1·−1·

(
127
19

)
= 1·−1·

(
127
19

)
= 1·−1·

(
13
19

)
= 1·−1·

(
19
13

)
=

1 · −1 ·
(

5
13

)
= 1 · −1 ·

(
13
5

)
= 1 · −1 ·

(
3
5

)
= 1 · −1 · −1 = 1.

(3) How many solutions does the equation [4]x2 − [13]x+ [5] = 0 have in Z103?

We compute [b2 − 4ac] = [169 − 2 · 4 · 5] = [129] = [26]. We compute
(

26
103

)
=(

2
103

) (
13
103

)
= 1 ·

(
103
13

)
= 1 ·

(
12
13

)
= 1 ·

(
4
13

)
·
(

3
13

)
= 1 · 1 ·

(
13
3

)
= 1 · 1 ·

(
1
3

)
= 1. So,

[26] ∈ Z103 is a nonzero square, and there are two solutions.

GAUSS’ LEMMA: Let p be an odd prime and set p′ = p−1
2

. Note that every integer coprime to
p is congruent modulo p to a unique integer in the set S = {±1,±2, · · · ,±p′}.

Let a be an integer coprime to p. Consider the sequence

a, 2a, 3a, . . . , p′a

and replace each element in the sequence with element of S that is congruent with modulo p
to get a list L of p′-many elements of S.

Then
(
a

p

)
= (−1)ν , where ν is the number of negative integers in L.

LEMMA: Let p and q be two coprime odd positive integers. Then
p−1
2∑

k=1

⌊
kq

p

⌋
+

q−1
2∑
`=1

⌊
`p

q

⌋
=
p− 1

2
· q − 1

2
.

(4) (Partial) proof of QR part 2 using Gauss’ Lemma: Let’s just deal with p ≡ 3 (mod 8).
Write p = 8`+ 3, so p′ = 4`+ 1. Compute L explicitly and deduce the result.

We apply Gauss’ Lemma with a = 2: we look at the sequence

2, 4, 6, . . . 4`, 4`+ 2, . . . , 8`+ 2

and compute the list L

L = {2, 4, 6, . . . 4`,−(4`+ 1), . . . ,−1}.
Thus, the number of positive elements is 2` and the number of negative elements is
p′ − 2` = 2`+ 1, so by Gauss’ Lemma,(

2

p

)
= (−1)2`+1 = −1.

(5) Proof of Gauss’ Lemma:



(a) Show that none of the elements of L equal each other, nor are ± each other. Conclude
that L is, in some order,±1,±2, . . . ,±p′, with each of 1, 2, . . . , p′ occurring once with
a definite sign.

(b) Compute the product of L modulo p two different ways and simplify.
(c) Apply Euler’s criterion, and conclude the proof.

(a) None are equal, since ia ≡ ja (mod p) implies i ≡ j (mod p), and none are
negative of each other, since ia ≡ −ja (mod p) implies i + j ≡ 0 (mod p),
which can’t happen for 0 ≤ i < j ≤ p′.

(b) The product of L modulo p is

a · 2a · 3a · · · p′a ≡ (±1) · (±2) · (±3) · · · (±p′) (mod p),

so, if v is the number of negatives, we have

ap
′
(p′)! ≡ (−1)v(p′)! (mod p).

Since (p′)! is a unit mod p, we must have

ap
′ ≡ (−1)v (mod p).

(c) By Euler’s criterion,(
a

p

)
≡ ap

′ ≡ (−1)v (mod p).

(6) Proof of QR using Gauss’ Lemma and other lemma: Take p, q distinct odd primes. For
each k ∈ {1, 2, . . . , p′}, write kq = bkq/pcp+ rk with 1 ≤ rk ≤ p− 1. Write

{[q], [2q], . . . , [p′q]} = {[r1], [r2], . . . , [rp′ ]} = {[a1], . . . , [au]} ∪ {[−b1], . . . , [−bv]}

with 0 < ai < p′ and 0 < bi < p′, as in the statement of Gauss’ Lemma.
(a) Explain why

∑p′

k=1 k = p2−1
8

.
(b) Explain why

∑p′

k=1 rk =
∑t

i=1 ai −
∑v

i=1 bi + vp.
(c) Explain why

∑t
i=1 ai +

∑v
i=1 bi =

p2−1
8

.
(d) Explain why p2−1

8
q = p

∑p′

k=1bkq/pc+
∑t

i=1 ai −
∑v

i=1 bi + vp.
(e) Explain why p2−1

8
(q − 1) = p

∑p′

k=1bkq/pc+ vp− 2 (
∑v

i=1 bi).
(f) Explain why v ≡

∑p′

k=1bkq/pc (mod 2), and apply Gauss’ Lemma to deduce(
q

p

)
= (−1)

∑p′
k=1bkq/pc.

(g) Switch the roles of p and q, and plug the result into the other Lemma to show that(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

Deduce the theorem.

(a) This sum equals p′(p′+1)
2

= (p−1)(p+1)
8

= p2−1
8

.
(b) Every rk is either some ai or p− bi, and each ai and bi occurs exactly once.



(c) As in the proof of Gauss’ Lemma, each number between 1 and p′ occurs exactly
once as an ai or as a bi. Then use part (a).

(d)
p2 − 1

8
(q − 1) =

p′∑
k=1

kq = p

p′∑
k=1

bkq/pc+
p′∑
k=1

rk

= p

p′∑
k=1

bkq/pc+
t∑
i=1

ai −
v∑
i=1

bi + vp.

(e) Take (d) minus (c).
(f) Taking (e) modulo 2, since q − 1 is even and p is odd, we get this congruence. By

Gauss’ Lemma,
(
q
p

)
≡ (−1)v, and swapping in for v, we get the statement.

(g) Switching roles, (
p

q

)
= (−1)

∑q′
`=1b`p/qc,

where q′ = q−1
2

. Plugging into the other Lemma yields(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

Since p−1
2

is even if and only if p ≡ 1 (mod 4) and likewise with q, the exponent
above is odd if and only if p ≡ q ≡ 3 (mod 4). The statement of QR follows.

(7) Proof of other lemma: Consider the rectangle below.

(a) Show that the number of integer points inside the rectangle (excluding the edges) is
p−1
2
· q−1

2
.

(b) Show that there are no integer points on the diagonal.

(c) Show that the number of integer points below the diagonal is
∑ p−1

2
k=1

⌊
kq
p

⌋
.

(d) Show that the number of integer points above the diagonal is
∑ q−1

2
`=1

⌊
`p
q

⌋
. Conclude

the proof.

(a) The integer points inside are exactly the pairs (k, `) with 1 ≤ k ≤ p−1
2

and 1 ≤
` ≤ q−1

2
.



(b) A point (a, b) on the diagonal would have qa = pb, which would imply a is a
multiple of p (since p, q coprime), which is impossible.

(c) The possible x values are 1 ≤ k ≤ p−1
2

and for any given k, the possible y values
are bounded below by 1 and above by kq/p; since these are integers, they range
from 1 to bkq

p
c. This yields the sum in the statement.

(d) The first part follows from (c) by switching roles. Since every point in the square
is either above or below the diagonal, the equality follows from (a), (c), and (d).


