From last time:
Definition: Let p be an odd prime. For $r \in \mathbb{Z}$ not a multiple of p we define the Legendre symbol of r with respect to p as

$$
\left(\frac{r}{p}\right)= \begin{cases}1 & \text { if }[r] \text { is a square in } \mathbb{Z}_{p} \\ -1 & \text { if }[r] \text { is a not square in } \mathbb{Z}_{p}\end{cases}
$$

Proposition: Let p be an odd prime and a, b integers not divisible by p. Then
(1) $a \equiv b(\bmod p)$ implies that $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
(2) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
(3) $\left(\frac{a^{2}}{p}\right)=1$.

Theorem (Quadratic Reciprocity): Let p and q be distinct odd primes. Then

$$
\begin{array}{ll}
\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right) & \text { if either } p \equiv 1(\bmod 4) \text { or } q \equiv 1(\bmod 4), \\
\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right) & \text { if both } p \equiv 3(\bmod 4) \text { and } q \equiv 3(\bmod 4) .
\end{array}
$$

Theorem (Quadratic Reciprocity part 2): Let p be an odd prime. Then

$$
\begin{array}{ll}
\left(\frac{2}{p}\right)=1 & \text { if } p \equiv \pm 1(\bmod 8) \\
\left(\frac{2}{p}\right)=-1 & \text { if } p \equiv \pm 3(\bmod 8)
\end{array}
$$

(1) Computing quadratic residues with $\mathrm{QR} \& \mathrm{QR}$ part 2:
(a) Compute $\left(\frac{2}{7}\right),\left(\frac{2}{11}\right)$, and $\left(\frac{2}{101}\right)$.
(b) What does QR say about $\left(\frac{3}{7}\right)$? Simplify the new Legendre symbol and evaluate.
(c) Apply the same strategy as the previous part to compute $\left(\frac{13}{107}\right)$.
(2) Computing quadratic residues QR, QR part 2, and the proposition:
(a) Compute ($\frac{10}{13}$) by starting with Proposition part (2), then continuing as in the previous problem.
(b) Compute $\left(\frac{38}{127}\right)$.
(3) How many solutions does the equation $[4] x^{2}-[13] x+[5]=0$ have in \mathbb{Z}_{103} ?

GaUSS' Lemma: Let p be an odd prime and set $p^{\prime}=\frac{p-1}{2}$. Note that every integer coprime to p is congruent modulo p to a unique integer in the set $S=\left\{ \pm 1, \pm 2, \cdots, \pm p^{\prime}\right\}$.

Let a be an integer coprime to p. Consider the sequence

$$
a, 2 a, 3 a, \ldots, p^{\prime} a
$$

and replace each element in the sequence with element of S that is congruent with modulo p to get a list L of p^{\prime}-many elements of S.

Then $\left(\frac{a}{p}\right)=(-1)^{\nu}$, where ν is the number of negative integers in L.
Lemma: Let p and q be two coprime odd positive integers. Then

$$
\sum_{k=1}^{\frac{p-1}{2}}\left\lfloor\frac{k q}{p}\right\rfloor+\sum_{\ell=1}^{\frac{q-1}{2}}\left\lfloor\frac{\ell p}{q}\right\rfloor=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

(4) (Partial) proof of QR part 2 using Gauss' Lemma: Let's just deal with $p \equiv 3(\bmod 8)$. Write $p=8 \ell+3$, so $p^{\prime}=4 \ell+1$. Compute L explicitly and deduce the result.
(5) Proof of Gauss' Lemma:
(a) Show that none of the elements of L equal each other, nor are \pm each other. Conclude that L is, in some order, $\pm 1, \pm 2, \ldots, \pm p^{\prime}$, with each of $1,2, \ldots, p^{\prime}$ occurring once with a definite sign.
(b) Compute the product of L modulo p two different ways and simplify.
(c) Apply Euler's criterion, and conclude the proof.
(6) Proof of QR using Gauss' Lemma and other lemma: Take p, q distinct odd primes. For each $k \in\left\{1,2, \ldots, p^{\prime}\right\}$, write $k q=\lfloor k q / p\rfloor p+r_{k}$ with $1 \leq r_{k} \leq p-1$. Write $\left\{[q],[2 q], \ldots,\left[p^{\prime} q\right]\right\}=\left\{\left[r_{1}\right],\left[r_{2}\right], \ldots,\left[r_{p^{\prime}}\right]\right\}=\left\{\left[a_{1}\right], \ldots,\left[a_{u}\right]\right\} \cup\left\{\left[-b_{1}\right], \ldots,\left[-b_{v}\right]\right\}$
with $0<a_{i}<p^{\prime}$ and $0<b_{i}<p^{\prime}$, as in the statement of Gauss' Lemma.
(a) Explain why $\sum_{k=1}^{p^{\prime}} k=\frac{p^{2}-1}{8}$.
(b) Explain why $\sum_{k=1}^{p^{\prime}} r_{k}=\sum_{i=1}^{t} a_{i}-\sum_{i=1}^{v} b_{i}+v p$.
(c) Explain why $\sum_{i=1}^{t} a_{i}+\sum_{i=1}^{v} b_{i}=\frac{p^{2}-1}{8}$.
(d) Explain why $\frac{p^{2}-1}{8} q=p \sum_{k=1}^{p^{\prime}}\lfloor k q / p\rfloor+\sum_{i=1}^{t} a_{i}-\sum_{i=1}^{v} b_{i}+v p$.
(e) Explain why $\frac{p^{2}-1}{8}(q-1)=p \sum_{k=1}^{p^{\prime}}\lfloor k q / p\rfloor+v p-2\left(\sum_{i=1}^{v} b_{i}\right)$.
(f) Explain why $v \equiv \sum_{k=1}^{p^{\prime}}\lfloor k q / p\rfloor(\bmod 2)$, and apply Gauss’ Lemma to deduce

$$
\left(\frac{q}{p}\right)=(-1)^{\sum_{k=1}^{p^{\prime}}\lfloor k q / p\rfloor}
$$

(g) Switch the roles of p and q, and plug the result into the other Lemma to show that

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} .
$$

Deduce the theorem.
(7) Proof of other lemma: Consider the rectangle below.

(a) Show that the number of integer points inside the rectangle (excluding the edges) is $\frac{p-1}{2} \cdot \frac{q-1}{2}$.
(b) Show that there are no integer points on the diagonal.

(d) Show that the number of integer points above the diagonal is $\sum_{\ell=1}^{\frac{q-1}{2}}\left\lfloor\frac{\ell p}{q}\right\rfloor$. Conclude the proof.

