
QUADRATIC RECIPROCITY

From last time:

DEFINITION: Let p be an odd prime. For r ∈ Z not a multiple of p we define the Legendre
symbol of r with respect to p as(

r

p

)
=

{
1 if [r] is a square in Zp,
−1 if [r] is a not square in Zp.

PROPOSITION: Let p be an odd prime and a, b integers not divisible by p. Then

(1) a ≡ b (mod p) implies that
(
a

p

)
=

(
b

p

)
.

(2)
(
ab

p

)
=

(
a

p

)(
b

p

)
.

(3)
(
a2

p

)
= 1. �

THEOREM (QUADRATIC RECIPROCITY): Let p and q be distinct odd primes. Then(
p

q

)
=

(
q

p

)
if either p ≡ 1 (mod 4) or q ≡ 1 (mod 4),(

p

q

)
= −

(
q

p

)
if both p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

THEOREM (QUADRATIC RECIPROCITY PART 2): Let p be an odd prime. Then(
2

p

)
= 1 if p ≡ ±1 (mod 8),(

2

p

)
= −1 if p ≡ ±3 (mod 8).

(1) Computing quadratic residues with QR & QR part 2:
(a) Compute

(
2
7

)
,
(

2
11

)
, and

(
2

101

)
.

(b) What does QR say about
(
3
7

)
? Simplify the new Legendre symbol and evaluate.

(c) Apply the same strategy as the previous part to compute
(

13
107

)
.

(2) Computing quadratic residues QR, QR part 2, and the proposition:
(a) Compute

(
10
13

)
by starting with Proposition part (2), then continuing as in the previous

problem.
(b) Compute

(
38
127

)
.

(3) How many solutions does the equation [4]x2 − [13]x+ [5] = 0 have in Z103?



GAUSS’ LEMMA: Let p be an odd prime and set p′ = p−1
2

. Note that every integer coprime to
p is congruent modulo p to a unique integer in the set S = {±1,±2, · · · ,±p′}.

Let a be an integer coprime to p. Consider the sequence

a, 2a, 3a, . . . , p′a

and replace each element in the sequence with element of S that is congruent with modulo p
to get a list L of p′-many elements of S.

Then
(
a

p

)
= (−1)ν , where ν is the number of negative integers in L.

LEMMA: Let p and q be two coprime odd positive integers. Then
p−1
2∑

k=1

⌊
kq

p

⌋
+

q−1
2∑
`=1

⌊
`p

q

⌋
=
p− 1

2
· q − 1

2
.

(4) (Partial) proof of QR part 2 using Gauss’ Lemma: Let’s just deal with p ≡ 3 (mod 8).
Write p = 8`+ 3, so p′ = 4`+ 1. Compute L explicitly and deduce the result.

(5) Proof of Gauss’ Lemma:
(a) Show that none of the elements of L equal each other, nor are ± each other. Conclude

that L is, in some order,±1,±2, . . . ,±p′, with each of 1, 2, . . . , p′ occurring once with
a definite sign.

(b) Compute the product of L modulo p two different ways and simplify.
(c) Apply Euler’s criterion, and conclude the proof.

(6) Proof of QR using Gauss’ Lemma and other lemma: Take p, q distinct odd primes. For
each k ∈ {1, 2, . . . , p′}, write kq = bkq/pcp+ rk with 1 ≤ rk ≤ p− 1. Write

{[q], [2q], . . . , [p′q]} = {[r1], [r2], . . . , [rp′ ]} = {[a1], . . . , [au]} ∪ {[−b1], . . . , [−bv]}
with 0 < ai < p′ and 0 < bi < p′, as in the statement of Gauss’ Lemma.
(a) Explain why

∑p′

k=1 k = p2−1
8

.
(b) Explain why

∑p′

k=1 rk =
∑t

i=1 ai −
∑v

i=1 bi + vp.
(c) Explain why

∑t
i=1 ai +

∑v
i=1 bi =

p2−1
8

.
(d) Explain why p2−1

8
q = p

∑p′

k=1bkq/pc+
∑t

i=1 ai −
∑v

i=1 bi + vp.
(e) Explain why p2−1

8
(q − 1) = p

∑p′

k=1bkq/pc+ vp− 2 (
∑v

i=1 bi).
(f) Explain why v ≡

∑p′

k=1bkq/pc (mod 2), and apply Gauss’ Lemma to deduce(
q

p

)
= (−1)

∑p′
k=1bkq/pc.

(g) Switch the roles of p and q, and plug the result into the other Lemma to show that(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

Deduce the theorem.



(7) Proof of other lemma: Consider the rectangle below.

(a) Show that the number of integer points inside the rectangle (excluding the edges) is
p−1
2
· q−1

2
.

(b) Show that there are no integer points on the diagonal.

(c) Show that the number of integer points below the diagonal is
∑ p−1

2
k=1

⌊
kq
p

⌋
.

(d) Show that the number of integer points above the diagonal is
∑ q−1

2
`=1

⌊
`p
q

⌋
. Conclude

the proof.


