DEFInITION: We say that an element $x \in \mathbb{Z}_{n}$ is a square or a quadratic residue if there is some $y \in \mathbb{Z}_{n}$ such that $y^{2}=x$, and in this case, we call y a square root of x.
(1) Let n be an odd positive integer. Suppose that $[a]$ is a unit in \mathbb{Z}_{n}. Show that ${ }^{1}$ the solutions x to the equation $[a] x^{2}+[b] x+[c]=[0]$ in \mathbb{Z}_{n} are exactly the elements of the form

$$
x=\frac{-[b]+u}{[2 a]} \quad \text { such that } u \text { is a square root of }\left[b^{2}-4 a c\right] .
$$

Since we assumed $[a]$ is a unit, we can rewrite as $x^{2}+\frac{[b]}{[a]} x+\frac{[c]}{[a]}=[0]$. Since n is odd, [2] is a unit too, so we can complete the square:

$$
\begin{aligned}
{[0] } & =x^{2}+\frac{[b]}{[a]} x+\frac{[c]}{[a]} \\
& =x^{2}+[2] \frac{[b]}{[2 a]} x+\left(\frac{[b]}{[2 a]}\right)^{2}-\left(\frac{[b]}{[2 a]}\right)^{2}+\frac{[c]}{[a]} \\
& =\left(x+\frac{[b]}{[2 a]}\right)^{2}+\frac{\left[4 a c-b^{2}\right]}{\left[4 a^{2}\right]},
\end{aligned}
$$

so

$$
\left(\frac{[2 a] x+[b]}{[2 a]}\right)^{2}=\frac{\left[b^{2}-4 a c\right]}{\left[4 a^{2}\right]} .
$$

Thus, x is a solution if and only if $[2 a] x+[b]$ is a square root of $\left[b^{2}-4 a c\right]$. Rearranging slightly gives the form above.
(2) Let p be an odd prime and $x \in \mathbb{Z}_{p}^{\times}$. Show that if x is a quadratic residue, then x has exactly two square roots $y \neq y^{\prime}$, and for these roots, $y^{\prime}=-y$.

If $y^{2}-x=0$ has a solution, it has at most two since this is a polynomial of degree two over a field. If y is a solution, then $y^{\prime}=-y$ is too.
(3) Let p be a prime number and g be a primitive root of \mathbb{Z}_{p}. Show that $[n] \in \mathbb{Z}_{p}^{\times}$is a quadratic residue if and only if the index of $[n]$ with respect to g is even.

Write $[n]=g^{k}$, so the index is k. If $k=2 \ell$ is even, then $[n]=g^{k}=g^{2 \ell}=\left(g^{\ell}\right)^{2}$, so $[n]$ is a quadratic residue. Conversely, if $[n]=[m]^{2}$, write $[m]=g^{\ell}$, so $[n]=[m]^{2}=g^{2 \ell}$, which is even. (Note that even and odd are well-defined in \mathbb{Z}_{p-1} for p odd, since any two representatives differ by a multiple of two.)

[^0]Definition: Let p be an odd prime. For $r \in \mathbb{Z}$ not a multiple of p we define the Legendre symbol of r with respect to p as

$$
\left(\frac{r}{p}\right)= \begin{cases}1 & \text { if }[r] \text { is a square in } \mathbb{Z}_{p} \\ -1 & \text { if }[r] \text { is a not square in } \mathbb{Z}_{p}\end{cases}
$$

Theorem (Euler's criterion): For p an odd prime and $r \in \mathbb{Z}$ not a multiple of p, we have

$$
\binom{r}{p} \equiv r^{(p-1) / 2} \quad(\bmod p)
$$

Theorem (Quadratic Reciprocity part -1): If p is odd, then

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 & (\bmod 4) \\
-1 & \text { if } p \equiv 3 & (\bmod 4)
\end{array} .\right.
$$

Proposition: Let p be an odd prime and a, b integers not divisible by p. Then
(1) $a \equiv b(\bmod p)$ implies that $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
(2) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
(3) $\left(\frac{a^{2}}{p}\right)=1$.
(4) (a) Without using the Proposition above, explain why $\left(\frac{4}{p}\right)=1$ for p an odd prime. Now explain why part (3) of the Proposition above is true in general.
(b) Use the Proposition above to explain the following: If a, b are not squares modulo p, then $a b$ is a square modulo p.
(c) Use ${ }^{2}$ the Proposition and Corollary above to determine how many solutions x to

$$
[3] x^{2}+[12] x-[2]=[0]
$$

there are in \mathbb{Z}_{43}.
(a) $[4]=[2]^{2} ;\left[a^{2}\right]=[a]^{2}$.
(b) We have $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)=-1$, so $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=(-1)^{2}=1$.
(c) Using the quadratic formula, we need to determine whether $\left[12^{2}-4 \cdot 3 \cdot-2\right]=[168]$ is a square in \mathbb{Z}_{43}. By the hint, we have $168=4 \cdot 42$, so

$$
\left(\frac{168}{43}\right)=\left(\frac{4}{43}\right)\left(\frac{42}{43}\right)=1\left(\frac{-1}{43}\right)=1 \cdot-1=-1 .
$$

[^1]We conclude that there are no solutions.
(5) Use problem \#3 to prove Euler's criterion.

Let $g=[a]$ be a primitive root and write $[r]=g^{k}$ for some k.
If $[r]$ is a residue, then $k=2 \ell$ is even, and $r^{(p-1) / 2} \equiv a^{2 \ell(p-1) / 2} \equiv a^{\ell(p-1)} \equiv 1$ $(\bmod p)$ by FLT.

If $[r]$ is not a residue, then $k=2 \ell+1$ is odd, and $r^{(p-1) / 2} \equiv a^{(2 \ell+1)(p-1) / 2} \equiv$ $a^{\ell(p-1)+(p-1) / 2} \equiv a^{(p-1) / 2}(\bmod p)$ by FLT. We know that $\left(a^{(p-1) / 2}\right)^{2} \equiv a^{p-1} \equiv 1$ $(\bmod p)$ again by FLT, so $a^{(p-1) / 2} \equiv \pm 1(\bmod p)$. But, by definition of primitive root, $a^{(p-1) / 2} \not \equiv 1(\bmod p)$, so $a^{(p-1) / 2} \equiv-1(\bmod p)$.
(6) Prove the proposition above.

We already did part (3). Part (1) is clear since the value of $\left(\frac{a}{p}\right)$ only depends on the congruence class of a modulo p. For (2), take a primitive root $g=[r]$ and write $a \equiv r^{k}, b \equiv r^{\ell}$. Then, by Euler's criterion,

$$
\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \equiv r^{k \frac{p-1}{2}} r^{\ell \frac{p-1}{2}} \equiv r^{(k+\ell) \frac{p-1}{2}} \equiv\left(\frac{a b}{p}\right) \quad(\bmod p)
$$

(7) Use Euler's criterion to prove QR part -1 above.

If $p \equiv 1(\bmod 4)$, write $p=4 k+1$; then $(-1)^{\frac{p-1}{2}} \equiv(-1)^{2 k} \equiv 1$, so -1 is a residue by Euler's criterion. If $p \equiv 3(\bmod 4)$, write $p=4 k+3$; then $(-1)^{\frac{p-1}{2}} \equiv(-1)^{2 k+1} \equiv-1$, so -1 is not a residue by Euler's criterion.
(8) When n is not a prime...
(a) Does the conclusion of $\# 4(b)$ hold if n is replaced by a general positive integer n instead of a prime p ?
(b) Suppose that $n=p q$ for primes $p \neq q$. Show that a is a quadratic residue modulo n if and only if a is a quadratic residue modulo p and a quadratic residue modulo q.

[^0]: ${ }^{1}$ Hint: Complete the square!

[^1]: ${ }^{2}$ You might find it convenient to write $168=4 \cdot 42$.

