
QUADRATIC RESIDUES

DEFINITION: We say that an element x ∈ Zn is a square or a quadratic residue if there is
some y ∈ Zn such that y2 = x, and in this case, we call y a square root of x.

(1) Let n be an odd positive integer. Suppose that [a] is a unit in Zn. Show that1 the solutions
x to the equation [a]x2 + [b]x+ [c] = [0] in Zn are exactly the elements of the form

x =
−[b] + u

[2a]
such that u is a square root of [b2 − 4ac].

Since we assumed [a] is a unit, we can rewrite as x2 + [b]
[a]
x+ [c]

[a]
= [0]. Since n is odd,

[2] is a unit too, so we can complete the square:

[0] = x2 +
[b]

[a]
x+

[c]

[a]

= x2 + [2]
[b]

[2a]
x+

(
[b]

[2a]

)2

−
(

[b]

[2a]

)2

+
[c]

[a]

=

(
x+

[b]

[2a]

)2

+
[4ac− b2]

[4a2]
,

so (
[2a]x+ [b]

[2a]

)2

=
[b2 − 4ac]

[4a2]
.

Thus, x is a solution if and only if [2a]x+[b] is a square root of [b2−4ac]. Rearranging
slightly gives the form above.

(2) Let p be an odd prime and x ∈ Z×p . Show that if x is a quadratic residue, then x has exactly
two square roots y 6= y′, and for these roots, y′ = −y.

If y2− x = 0 has a solution, it has at most two since this is a polynomial of degree two
over a field. If y is a solution, then y′ = −y is too.

(3) Let p be a prime number and g be a primitive root of Zp. Show that [n] ∈ Z×p is a quadratic
residue if and only if the index of [n] with respect to g is even.

Write [n] = gk, so the index is k. If k = 2` is even, then [n] = gk = g2` = (g`)2, so [n]
is a quadratic residue. Conversely, if [n] = [m]2, write [m] = g`, so [n] = [m]2 = g2`,
which is even. (Note that even and odd are well-defined in Zp−1 for p odd, since any
two representatives differ by a multiple of two.)

1Hint: Complete the square!



DEFINITION: Let p be an odd prime. For r ∈ Z not a multiple of p we define the Legendre
symbol of r with respect to p as(

r

p

)
=

{
1 if [r] is a square in Zp,

−1 if [r] is a not square in Zp.

THEOREM (EULER’S CRITERION): For p an odd prime and r ∈ Z not a multiple of p, we
have (

r

p

)
≡ r(p−1)/2 (mod p).

THEOREM (QUADRATIC RECIPROCITY PART −1): If p is odd, then(
−1
p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)
.

PROPOSITION: Let p be an odd prime and a, b integers not divisible by p. Then

(1) a ≡ b (mod p) implies that
(
a

p

)
=

(
b

p

)
.

(2)
(
ab

p

)
=

(
a

p

)(
b

p

)
.

(3)
(
a2

p

)
= 1.

(4) (a) Without using the Proposition above, explain why
(
4

p

)
= 1 for p an odd prime. Now

explain why part (3) of the Proposition above is true in general.
(b) Use the Proposition above to explain the following: If a, b are not squares modulo p,

then ab is a square modulo p.
(c) Use2 the Proposition and Corollary above to determine how many solutions x to

[3]x2 + [12]x− [2] = [0]

there are in Z43.

(a) [4] = [2]2; [a2] = [a]2.
(b) We have

(
a
p

)
=
(

b
p

)
= −1, so

(
ab
p

)
=
(

a
p

)(
b
p

)
= (−1)2 = 1.

(c) Using the quadratic formula, we need to determine whether [122−4·3·−2] = [168]
is a square in Z43. By the hint, we have 168 = 4 · 42, so(

168

43

)
=

(
4

43

)(
42

43

)
= 1

(
−1
43

)
= 1 · −1 = −1.

2You might find it convenient to write 168 = 4 · 42.



We conclude that there are no solutions.

(5) Use problem #3 to prove Euler’s criterion.

Let g = [a] be a primitive root and write [r] = gk for some k.
If [r] is a residue, then k = 2` is even, and r(p−1)/2 ≡ a2`(p−1)/2 ≡ a`(p−1) ≡ 1

(mod p) by FLT.
If [r] is not a residue, then k = 2` + 1 is odd, and r(p−1)/2 ≡ a(2`+1)(p−1)/2 ≡

a`(p−1)+(p−1)/2 ≡ a(p−1)/2 (mod p) by FLT. We know that (a(p−1)/2)2 ≡ ap−1 ≡ 1
(mod p) again by FLT, so a(p−1)/2 ≡ ±1 (mod p). But, by definition of primitive
root, a(p−1)/2 6≡ 1 (mod p), so a(p−1)/2 ≡ −1 (mod p).

(6) Prove the proposition above.

We already did part (3). Part (1) is clear since the value of
(

a
p

)
only depends on

the congruence class of a modulo p. For (2), take a primitive root g = [r] and write
a ≡ rk, b ≡ r`. Then, by Euler’s criterion,(

a

p

)(
b

p

)
≡ rk

p−1
2 r`

p−1
2 ≡ r(k+`) p−1

2 ≡
(
ab

p

)
(mod p).

(7) Use Euler’s criterion to prove QR part −1 above.

If p ≡ 1 (mod 4), write p = 4k+1; then (−1) p−1
2 ≡ (−1)2k ≡ 1, so−1 is a residue by

Euler’s criterion. If p ≡ 3 (mod 4), write p = 4k+3; then (−1) p−1
2 ≡ (−1)2k+1 ≡ −1,

so −1 is not a residue by Euler’s criterion.

(8) When n is not a prime. . .
(a) Does the conclusion of #4(b) hold if n is replaced by a general positive integer n

instead of a prime p?
(b) Suppose that n = pq for primes p 6= q. Show that a is a quadratic residue modulo n if

and only if a is a quadratic residue modulo p and a quadratic residue modulo q.


