QUADRATIC RESIDUES

DEFINITION: We say that an element $x \in \mathbb{Z}_{n}$ is a square or a quadratic residue if there is some $y \in \mathbb{Z}_{n}$ such that $y^{2}=x$, and in this case, we call y a square root of x.
(1) Let n be an odd positive integer. Suppose that $[a]$ is a unit in \mathbb{Z}_{n}. Show that ${ }^{1}$ the solutions x to the equation $[a] x^{2}+[b] x+[c]=[0]$ in \mathbb{Z}_{n} are exactly the elements of the form

$$
x=\frac{-[b]+u}{[2 a]} \quad \text { such that } u \text { is a square root of }\left[b^{2}-4 a c\right] .
$$

(2) Let p be an odd prime and $x \in \mathbb{Z}_{p}^{\times}$. Show that if x is a quadratic residue, then x has exactly two square roots $y \neq y^{\prime}$, and for these roots, $y^{\prime}=-y$.
(3) Let p be a prime number and g be a primitive root of \mathbb{Z}_{p}. Show that $[n] \in \mathbb{Z}_{p}^{\times}$is a quadratic residue if and only if the index of $[n]$ with respect to g is even.

Definition: Let p be an odd prime. For $r \in \mathbb{Z}$ not a multiple of p we define the Legendre symbol of r with respect to p as

$$
\left(\frac{r}{p}\right)= \begin{cases}1 & \text { if }[r] \text { is a square in } \mathbb{Z}_{p} \\ -1 & \text { if }[r] \text { is a not square in } \mathbb{Z}_{p}\end{cases}
$$

Theorem (Euler's criterion): For p an odd prime and $r \in \mathbb{Z}$ not a multiple of p, we have

$$
\binom{r}{p} \equiv r^{(p-1) / 2} \quad(\bmod p)
$$

THEOREM (QuADRATIC RECIPROCITY PART -1): If p is odd, then

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 & (\bmod 4) \\
-1 & \text { if } p \equiv 3 & (\bmod 4)
\end{array} .\right.
$$

Proposition: Let p be an odd prime and a, b integers not divisible by p. Then
(1) $a \equiv b(\bmod p)$ implies that $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
(2) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
(3) $\left(\frac{a^{2}}{p}\right)=1$.

[^0](4) (a) Without using the Proposition above, explain why $\left(\frac{4}{p}\right)=1$ for p an odd prime. Now explain why part (3) of the Proposition above is true in general.
(b) Use the Proposition above to explain the following: If a, b are not squares modulo p, then $a b$ is a square modulo p.
(c) Use^{2} the Proposition and Corollary above to determine how many solutions x to
$$
[3] x^{2}+[12] x-[2]=[0]
$$
there are in \mathbb{Z}_{43}.
(5) Use problem \#3 to prove Euler's criterion.
(6) Prove the proposition above.
(7) Use Euler's criterion to prove QR part -1 above.
(8) When n is not a prime...
(a) Does the conclusion of $\# 4(b)$ hold if n is replaced by a general positive integer n instead of a prime p ?
(b) Suppose that $n=p q$ for primes $p \neq q$. Show that a is a quadratic residue modulo n if and only if a is a quadratic residue modulo p and a quadratic residue modulo q.

[^1]
[^0]: ${ }^{1}$ Hint: Complete the square!

[^1]: ${ }^{2}$ You might find it convenient to write $168=4 \cdot 42$.

