PRIMITIVE ROOTS AND DISCRETE LOGARITHMS

PROPOSITION: Let p be a prime. Let p(x) be a polynomial of degree d with coefficients in Z,. Then
p(x) has at most d roots in Z,,. O

LEMMA (FROM HW): If GG is a group, g € G, and n a positive integer such that ¢" = 1, then the order
of g divides n.

DEFINITION: Let n be a positive integer. An element g € Z, is a primitive root if the order of g in Z
equals ¢(n) (the cardinality of Z).

THEOREM: Let p be a prime number. Then there exists a primitive root in Z;'.

(1) Warmup with primitive roots:
(a) Check that [2] is a primitive root in Zs.
(b) Check that [3] is a primitive root in Z,.
(c) Find a primitive root in Z.
(d) Show that there is no primitive root in Zs.

(a) p(5) = 4 so we want order 4. [2]' = [2], [2]> = [4], [2]> = [3], [2]* = [1], so the order of [2]
is indeed 4.

(b) p(4) = 2 so we want order 2. [3]' = [2], [3]> = [1], so the order of [3] is indeed 2.

(¢) [2] doesn’t work, since [2]* = [1], but [3] is a primitive root.

(d) [3]* = [5]* = [7]* = [1], so nothing has order 4 = ¢ (8).

(2) Suppose that g = [a] is a primitive root in Z,,.
(a) Show that'if 0 < m <n <p—1,and g™ = ¢g", then m = n.
(b) Show that every element of Z; can be written as g" for a unique integer n with0 < n <p—1.
(c) Show that the relationy € Z ~~ [m] € Z,,_, ify = g™ is a well-defined function [ : Z* — Z, ;.

(@ Let0 <m <n < p—1and 2™ = z". Then [1] = z7™2™ = 272" = 2" ™ and
n —m < p — 1. Since the order of x is p — 1, we must have n — m = 0, son — m.
(b) From part (1), {1, 2,22, ..., 2P~%} are distinct elements of Z, . Since this list has p — 1

elements and Z; does too, each element of Z; must occur exactly once.

(c) We need to show that if y = ¢™ = ¢", then [m| = [n] in Z, ;. Say m < n. If g™ = ¢",
then 1 = ¢" ™, so by the lemma, p — 1 | n — m, and hence n = m (mod p — 1); i.e.,
m] = [n]inZ,_;.

DEFINITION: If [a] is a primitive root in Z,, the function
Zy — Zyp1  [b] = [m] such that [b] = [a]™

is called the discrete logarithm or index of Z with base [a].

(3) Let p be a prime and [a] a primitive root in Z,. Show that the corresponding discrete logarithm
function I : Z; — 7,1 satisfies the property

I{wy) = I(z) + I(y) and [(z") = [n]I(z)

"Hint: 2™ has an inverse.



forz,y € Z; andn € N.

Let 2,y € Z, and say that I(z) = [(] and I(y) = [m]. Then z = [a)’ and y = [a]™. So,
zy = [a]*[a]™ = [a]**™, and hence I(zy) = [{ +m| = [(x) + I(y).
Similarly, since z" = [a]™, I(2™) = [(n] = [n][(] = [n]I(z).

(4) (a) Verify that [2] is a primitive root in Z; and compute the corresponding discrete logarithm.
(b) Use this function to find a square root of [3] in Z;.

(a) Compute the powers of [2]:
n |[0]1]2]3]4]5|6]7][8]09/|
2 [ 20 | 4] ] (8 [ (3] | [ao] [ (9] [ [7] [ 3] | [6] |
and [2]'° = [1]. The index function is just the inverse function:
v | (]| (21| (3] | (4] | 5] | [6] | [7] | 8] | [9] | [10] |
Iz) [0 1][8[2]4][9|7]3][6] 5 |

(b) Since I([3]) = 8, an element of index 4 would be a square root, so [5] is a square root.

PROPOSITION: Let n be a positive integer. Then Z o(d) = n.
d|n

THEOREM: Let p be a prime. Suppose that there are n distinct solutions to 2" = 1 in Z;,. Then Z has
exactly ¢(n) elements of order n.

(5) Explain how the theorem above implies that there exists a primitive root in Z,,.

By FLT, every element of Z; is a solution to 2P~ = 11in Z,, so the theorem applies. There are
then p(p — 1) elements of order p—1in Z,'. Since Z,_, is nonempty, p(p — 1) > 0. Thus, there
is a primitive root.

(6) Proof of Theorem (using the Proposition): Fix a prime number p.
(a) We proceed by strong induction on n. What does that mean concretely here? Complete the
casen = 1.
(b) Suppose that ™ = 1 but the order of x in Z; is not n. What does the Lemma say about the
order of 7 Rephrase this in terms of z satisfying an equation.
(c) Suppose that d is a divisor of n, and write n = de. Note that

1= (xd . 1)(xd(e71) + xd(€72) T Q?d + 1>.
In particular, every solution of 2" — 1 is a root of z% — 1 or of x4~V 4 zde=2) L ... 4 zd 4 1,
Can z? — 1 have more than d roots in Z,? Can 2 — 1 have less than d roots in Z, if ™ — 1 has
n roots?
(d) Apply the induction hypothesis to show that the number of solutions to ™ = 1 of order less

thannis 3, 4z, P(d).
(e) Apply the Proposition to conclude the proof of the Theorem.

(a) We must show that it is true for n = 1 and that if, for each d < n, if ¢ = 1 has d distinct
solutions then there are ((d) elements of order d in Z), then if 2" = 1 has n distinct




solutions then there are ¢(n) elements of order n in Z;. Henceforth, we will assume that,
for each d < n, if % = 1 has d distinct solutions then there are (d) elements of order
dinZ,.

(b) The order of x divides n in this case. That is, x is a root of z% — 1.

(c) No, by the first theorem, 2% — 1 cannot have more than d roots in Zy,. If ™ — 1 has n roots,
note that x%¢=Y 4 4= ... 4 24 4 1 has at most d(e — 1) = n — d roots. If 2% — 1
had ¢ < d roots, then 2" — 1 would have at most ¢ + (n — d) < d +n — d = n roots,
contradicting the hypothesis.

(d) The TH applies to every divisor d of n, so for each d | n, d < n, we have ¢(d) elements of
order d.

(e) The total number of solutions to ™ — 1 is n. Every such solution either has order n or order
d with d | n and d < n. Adding up all of the latter type gives

> eld)=| > e(d) ]| —e(n) =n—en).

d|n,d#n d|n

Thus, the number of solutions with order n is ¢ (n).

(7) Proof of Proposition:
(a) Explain the following formula:

n= Z#{a |1 <a<nand ged(a,n) =d}.
d|n
(b) Explain® why
#{a |1 <a<nand ged(a,n) =d} = ¢(n/d).

(c) Finally, explain® why
Yo en/d) = p(d)

d|n d|n
and complete the proof.

(a) Every integer between 1 and n occurs in exactly one of the sets on the right hand side.

(b) Following the hint, the integers between 1 and n whose gcd with n is d correspond to
integers between 1 and n/d that are coprime with n/d. The phi function counts the latter.

(c) As d ranges through the divisors of n, n/d goes through all of the divisors of n, obtaining
each value once. Put together with the previous parts, the formula follows.

(8) Let p, g be distinct odd primes. Show that there is no primitive root of Z,,: i.e., there is no element
of order ¢(pq) in Z,,.

ZHint: You proved that if ged(a, n) = d, then ged(a/d, n/d) = 1; also, if ged(b, n/d) = 1, then ged(bd, n) = d.
Hint: As d ranges through all the divisors of 7, so does n/d.




