PROPOSITION: Let p be a prime. Let p(x) be a polynomial of degree d with coefficients in \mathbb{Z}_p . Then p(x) has at most d roots in \mathbb{Z}_p .

LEMMA (FROM HW): If G is a group, $g \in G$, and n a positive integer such that $g^n = 1$, then the order of g divides n.

DEFINITION: Let *n* be a positive integer. An element $g \in \mathbb{Z}_n^{\times}$ is a **primitive root** if the order of *g* in \mathbb{Z}_n^{\times} equals $\phi(n)$ (the cardinality of \mathbb{Z}_n^{\times}).

THEOREM: Let p be a prime number. Then there exists a primitive root in \mathbb{Z}_p^{\times} .

- (1) Warmup with primitive roots:
 - (a) Check that [2] is a primitive root in \mathbb{Z}_5 .
 - (b) Check that [3] is a primitive root in \mathbb{Z}_4 .
 - (c) Find a primitive root in \mathbb{Z}_7 .
 - (d) Show that there is no primitive root in \mathbb{Z}_8 .
 - (a) $\varphi(5) = 4$ so we want order 4. $[2]^1 = [2], [2]^2 = [4], [2]^3 = [3], [2]^4 = [1]$, so the order of [2] is indeed 4.
 - (b) $\varphi(4) = 2$ so we want order 2. $[3]^1 = [2], [3]^2 = [1]$, so the order of [3] is indeed 2.
 - (c) [2] doesn't work, since $[2]^3 = [1]$, but [3] is a primitive root.
 - (d) $[3]^2 = [5]^2 = [7]^2 = [1]$, so nothing has order $4 = \varphi(8)$.

(2) Suppose that g = [a] is a primitive root in \mathbb{Z}_p .

- (a) Show that ¹ if $0 \le m \le n , and <math>g^m = g^n$, then m = n.
- (b) Show that every element of \mathbb{Z}_p^{\times} can be written as g^n for a unique integer n with $0 \le n .$
- (c) Show that the relation $y \in \mathbb{Z}_p^{\times} \to [m] \in \mathbb{Z}_{p-1}$ if $y = g^m$ is a well-defined function $I : \mathbb{Z}_p^{\times} \to \mathbb{Z}_{p-1}$.
 - (a) Let $0 \le m \le n and <math>x^m = x^n$. Then $[1] = x^{-m}x^m = x^{-m}x^n = x^{n-m}$ and n m . Since the order of x is <math>p 1, we must have n m = 0, so n m.
 - (b) From part (1), $\{1, x, x^2, \dots, x^{p-2}\}$ are distinct elements of \mathbb{Z}_p^{\times} . Since this list has p-1 elements and \mathbb{Z}_p^{\times} does too, each element of \mathbb{Z}_p^{\times} must occur exactly once.
 - (c) We need to show that if $y = g^m = g^n$, then [m] = [n] in \mathbb{Z}_{p-1} . Say $m \le n$. If $g^m = g^n$, then $1 = g^{n-m}$, so by the lemma, $p-1 \mid n-m$, and hence $n \equiv m \pmod{p-1}$; i.e., [m] = [n] in \mathbb{Z}_{p-1} .

DEFINITION: If [a] is a primitive root in \mathbb{Z}_p , the function

 $\mathbb{Z}_p^{\times} \to \mathbb{Z}_{p-1}$ $[b] \mapsto [m]$ such that $[b] = [a]^m$

is called the **discrete logarithm** or **index** of \mathbb{Z}_p^{\times} with base [a].

(3) Let p be a prime and [a] a primitive root in Z_p. Show that the corresponding discrete logarithm function I : Z_p[×] → Z_{p-1} satisfies the property

$$I(xy) = I(x) + I(y)$$
 and $I(x^n) = [n]I(x)$

¹Hint: x^m has an inverse.

for $x, y \in \mathbb{Z}_p^{\times}$ and $n \in \mathbb{N}$.

Let $x, y \in \mathbb{Z}_p^{\times}$, and say that $I(x) = [\ell]$ and I(y) = [m]. Then $x = [a]^{\ell}$ and $y = [a]^m$. So, $xy = [a]^{\ell}[a]^m = [a]^{\ell+m}$, and hence $I(xy) = [\ell+m] = I(x) + I(y)$. Similarly, since $x^n = [a]^{\ell n}$, $I(x^n) = [\ell n] = [n][\ell] = [n]I(x)$.

(4) (a) Verify that [2] is a primitive root in Z₁₁ and compute the corresponding discrete logarithm.
(b) Use this function to find a square root of [3] in Z₁₁.

(a) Compute the powers of [2]: $\frac{n || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 7 || 3 || 6 || 7 || 1 || 2 || 1 || 2 || 4 || 8 || 5 || 1 || 1 || 2 || 1 || 1 || 2 || 1 ||$

PROPOSITION: Let n be a positive integer. Then $\sum_{d \mid n} \varphi(d) = n$.

THEOREM: Let p be a prime. Suppose that there are n distinct solutions to $x^n = 1$ in \mathbb{Z}_p . Then \mathbb{Z}_p^{\times} has exactly $\varphi(n)$ elements of order n.

(5) Explain how the theorem above implies that there exists a primitive root in \mathbb{Z}_p .

By FLT, every element of \mathbb{Z}_p^{\times} is a solution to $x^{p-1} = 1$ in \mathbb{Z}_p , so the theorem applies. There are then $\varphi(p-1)$ elements of order p-1 in \mathbb{Z}_p^{\times} . Since $\mathbb{Z}_{p-1}^{\times}$ is nonempty, $\varphi(p-1) > 0$. Thus, there is a primitive root.

- (6) Proof of Theorem (using the Proposition): Fix a prime number p.
 - (a) We proceed by strong induction on n. What does that mean concretely here? Complete the case n = 1.
 - (b) Suppose that $x^n = 1$ but the order of x in \mathbb{Z}_p^{\times} is not n. What does the Lemma say about the order of x? Rephrase this in terms of x satisfying an equation.
 - (c) Suppose that d is a divisor of n, and write n = de. Note that

$$x^{n} - 1 = (x^{d} - 1)(x^{d(e-1)} + x^{d(e-2)} + \dots + x^{d} + 1).$$

In particular, every solution of $x^n - 1$ is a root of $x^d - 1$ or of $x^{d(e-1)} + x^{d(e-2)} + \cdots + x^d + 1$. Can $x^d - 1$ have more than d roots in \mathbb{Z}_p ? Can $x^d - 1$ have less than d roots in \mathbb{Z}_p if $x^n - 1$ has n roots?

- (d) Apply the induction hypothesis to show that the number of solutions to $x^n = 1$ of order *less than* n is $\sum_{d \mid n, d \neq n} \varphi(d)$.
- (e) Apply the Proposition to conclude the proof of the Theorem.
 - (a) We must show that it is true for n = 1 and that if, for each d < n, if $x^d = 1$ has d distinct solutions then there are $\varphi(d)$ elements of order d in \mathbb{Z}_p^{\times} , then if $x^n = 1$ has n distinct

solutions then there are $\varphi(n)$ elements of order n in \mathbb{Z}_p^{\times} . Henceforth, we will assume that, for each d < n, if $x^d = 1$ has d distinct solutions then there are $\varphi(d)$ elements of order d in \mathbb{Z}_p^{\times} .

- (b) The order of x divides n in this case. That is, x is a root of $x^d 1$.
- (c) No, by the first theorem, $x^d 1$ cannot have more than d roots in \mathbb{Z}_p . If $x^n 1$ has n roots, note that $x^{d(e-1)} + x^{d(e-2)} + \cdots + x^d + 1$ has at most d(e-1) = n d roots. If $x^d 1$ had c < d roots, then $x^n 1$ would have at most c + (n d) < d + n d = n roots, contradicting the hypothesis.
- (d) The IH applies to every divisor d of n, so for each $d \mid n, d < n$, we have $\varphi(d)$ elements of order d.
- (e) The total number of solutions to $x^n 1$ is n. Every such solution either has order n or order d with $d \mid n$ and d < n. Adding up all of the latter type gives

$$\sum_{d \mid n, d \neq n} \varphi(d) = \left(\sum_{d \mid n} \varphi(d) \right) - \varphi(n) = n - \varphi(n).$$

Thus, the number of solutions with order n is $\varphi(n)$.

- (7) Proof of Proposition:
 - (a) Explain the following formula:

$$n = \sum_{d \mid n} #\{a \mid 1 \le a \le n \text{ and } gcd(a, n) = d\}.$$

(b) Explain² why

$$#\{a \mid 1 \le a \le n \text{ and } gcd(a, n) = d\} = \varphi(n/d).$$

(c) Finally, explain³ why

$$\sum_{d \mid n} \varphi(n/d) = \sum_{d \mid n} \varphi(d)$$

and complete the proof.

- (a) Every integer between 1 and n occurs in exactly one of the sets on the right hand side.
- (b) Following the hint, the integers between 1 and n whose gcd with n is d correspond to integers between 1 and n/d that are coprime with n/d. The phi function counts the latter.
- (c) As d ranges through the divisors of n, n/d goes through all of the divisors of n, obtaining each value once. Put together with the previous parts, the formula follows.
- (8) Let p, q be distinct odd primes. Show that there is no primitive root of \mathbb{Z}_{pq} : i.e., there is no element of order $\varphi(pq)$ in \mathbb{Z}_{pq}^{\times} .

²Hint: You proved that if gcd(a, n) = d, then gcd(a/d, n/d) = 1; also, if gcd(b, n/d) = 1, then gcd(bd, n) = d.

³Hint: As d ranges through all the divisors of n, so does n/d.