Proposition: Let p be a prime. Let $p(x)$ be a polynomial of degree d with coefficients in \mathbb{Z}_{p}. Then $p(x)$ has at most d roots in \mathbb{Z}_{p}.

LEMMA (FROM HW): If G is a group, $g \in G$, and n a positive integer such that $g^{n}=1$, then the order of g divides n.

DEFINITION: Let n be a positive integer. An element $g \in \mathbb{Z}_{n}^{\times}$is a primitive root if the order of g in \mathbb{Z}_{n}^{\times} equals $\phi(n)$ (the cardinality of \mathbb{Z}_{n}^{\times}).

THEOREM: Let p be a prime number. Then there exists a primitive root in \mathbb{Z}_{p}^{\times}.
(1) Warmup with primitive roots:
(a) Check that [2] is a primitive root in \mathbb{Z}_{5}.
(b) Check that [3] is a primitive root in \mathbb{Z}_{4}.
(c) Find a primitive root in \mathbb{Z}_{7}.
(d) Show that there is no primitive root in \mathbb{Z}_{8}.
(a) $\varphi(5)=4$ so we want order $4 .[2]^{1}=[2],[2]^{2}=[4],[2]^{3}=[3],[2]^{4}=[1]$, so the order of $[2]$ is indeed 4 .
(b) $\varphi(4)=2$ so we want order $2 .[3]^{1}=[2],[3]^{2}=[1]$, so the order of $[3]$ is indeed 2 .
(c) [2] doesn't work, since $[2]^{3}=[1]$, but $[3]$ is a primitive root.
(d) $[3]^{2}=[5]^{2}=[7]^{2}=[1]$, so nothing has order $4=\varphi(8)$.
(2) Suppose that $g=[a]$ is a primitive root in \mathbb{Z}_{p}.
(a) Show that ${ }^{1}$ if $0 \leq m \leq n<p-1$, and $g^{m}=g^{n}$, then $m=n$.
(b) Show that every element of \mathbb{Z}_{p}^{\times}can be written as g^{n} for a unique integer n with $0 \leq n<p-1$.
(c) Show that the relation $y \in \mathbb{Z}_{p}^{\times} \rightsquigarrow[m] \in \mathbb{Z}_{p-1}$ if $y=g^{m}$ is a well-defined function $I: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p-1}$.
(a) Let $0 \leq m \leq n<p-1$ and $x^{m}=x^{n}$. Then [1] $=x^{-m} x^{m}=x^{-m} x^{n}=x^{n-m}$ and $n-m<p-1$. Since the order of x is $p-1$, we must have $n-m=0$, so $n-m$.
(b) From part (1), $\left\{1, x, x^{2}, \ldots, x^{p-2}\right\}$ are distinct elements of \mathbb{Z}_{p}^{\times}. Since this list has $p-1$ elements and \mathbb{Z}_{p}^{\times}does too, each element of \mathbb{Z}_{p}^{\times}must occur exactly once.
(c) We need to show that if $y=g^{m}=g^{n}$, then $[m]=[n]$ in \mathbb{Z}_{p-1}. Say $m \leq n$. If $g^{m}=g^{n}$, then $1=g^{n-m}$, so by the lemma, $p-1 \mid n-m$, and hence $n \equiv m(\bmod p-1)$; i.e., $[m]=[n]$ in \mathbb{Z}_{p-1}.

Definition: If $[a]$ is a primitive root in \mathbb{Z}_{p}, the function

$$
\mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p-1} \quad[b] \mapsto[m] \text { such that }[b]=[a]^{m}
$$

is called the discrete logarithm or index of \mathbb{Z}_{p}^{\times}with base $[a]$.
(3) Let p be a prime and $[a]$ a primitive root in \mathbb{Z}_{p}. Show that the corresponding discrete logarithm function $I: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p-1}$ satisfies the property

$$
I(x y)=I(x)+I(y) \quad \text { and } \quad I\left(x^{n}\right)=[n] I(x)
$$

[^0]for $x, y \in \mathbb{Z}_{p}^{\times}$and $n \in \mathbb{N}$.
Let $x, y \in \mathbb{Z}_{p}^{\times}$, and say that $I(x)=[\ell]$ and $I(y)=[m]$. Then $x=[a]^{\ell}$ and $y=[a]^{m}$. So, $x y=[a]^{\ell}[a]^{m}=[a]^{\ell+m}$, and hence $I(x y)=[\ell+m]=I(x)+I(y)$.

Similarly, since $x^{n}=[a]^{\ell n}, I\left(x^{n}\right)=[\ell n]=[n][\ell]=[n] I(x)$.
(4) (a) Verify that [2] is a primitive root in \mathbb{Z}_{11} and compute the corresponding discrete logarithm.
(b) Use this function to find a square root of $[3]$ in \mathbb{Z}_{11}.
(a) Compute the powers of [2]:

n	0	1	2	3	4	5	6	7	8	9
$[2]^{n}$	$[1]$	$[2]$	$[4]$	$[8]$	$[5]$	$[10]$	$[9]$	$[7]$	$[3]$	$[6]$

and $[2]^{10}=[1]$. The index function is just the inverse function:

| x | $[1]$ | $[2]$ | $[3]$ | $[4]$ | $[5]$ | $[6]$ | $[7]$ | $[8]$ | $[9]$ | $[10]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I(x)$ | 0 | 1 | 8 | 2 | 4 | 9 | 7 | 3 | 6 | 5 |

(b) Since $I([3])=8$, an element of index 4 would be a square root, so [5] is a square root.

Proposition: Let n be a positive integer. Then $\sum_{d \mid n} \varphi(d)=n$.
THEOREM: Let p be a prime. Suppose that there are n distinct solutions to $x^{n}=1$ in \mathbb{Z}_{p}. Then \mathbb{Z}_{p}^{\times}has exactly $\varphi(n)$ elements of order n.
(5) Explain how the theorem above implies that there exists a primitive root in \mathbb{Z}_{p}.

By FLT, every element of \mathbb{Z}_{p}^{\times}is a solution to $x^{p-1}=1$ in \mathbb{Z}_{p}, so the theorem applies. There are then $\varphi(p-1)$ elements of order $p-1$ in \mathbb{Z}_{p}^{\times}. Since $\mathbb{Z}_{p-1}^{\times}$is nonempty, $\varphi(p-1)>0$. Thus, there is a primitive root.
(6) Proof of Theorem (using the Proposition): Fix a prime number p.
(a) We proceed by strong induction on n. What does that mean concretely here? Complete the case $n=1$.
(b) Suppose that $x^{n}=1$ but the order of x in \mathbb{Z}_{p}^{\times}is not n. What does the Lemma say about the order of x ? Rephrase this in terms of x satisfying an equation.
(c) Suppose that d is a divisor of n, and write $n=d e$. Note that

$$
x^{n}-1=\left(x^{d}-1\right)\left(x^{d(e-1)}+x^{d(e-2)}+\cdots+x^{d}+1\right) .
$$

In particular, every solution of $x^{n}-1$ is a root of $x^{d}-1$ or of $x^{d(e-1)}+x^{d(e-2)}+\cdots+x^{d}+1$. Can $x^{d}-1$ have more than d roots in \mathbb{Z}_{p} ? Can $x^{d}-1$ have less than d roots in \mathbb{Z}_{p} if $x^{n}-1$ has n roots?
(d) Apply the induction hypothesis to show that the number of solutions to $x^{n}=1$ of order less than n is $\sum_{d \mid n, d \neq n} \varphi(d)$.
(e) Apply the Proposition to conclude the proof of the Theorem.
(a) We must show that it is true for $n=1$ and that if, for each $d<n$, if $x^{d}=1$ has d distinct solutions then there are $\varphi(d)$ elements of order d in \mathbb{Z}_{p}^{\times}, then if $x^{n}=1$ has n distinct
solutions then there are $\varphi(n)$ elements of order n in \mathbb{Z}_{p}^{\times}. Henceforth, we will assume that, for each $d<n$, if $x^{d}=1$ has d distinct solutions then there are $\varphi(d)$ elements of order d in \mathbb{Z}_{p}^{\times}.
(b) The order of x divides n in this case. That is, x is a root of $x^{d}-1$.
(c) No, by the first theorem, $x^{d}-1$ cannot have more than d roots in \mathbb{Z}_{p}. If $x^{n}-1$ has n roots, note that $x^{d(e-1)}+x^{d(e-2)}+\cdots+x^{d}+1$ has at most $d(e-1)=n-d$ roots. If $x^{d}-1$ had $c<d$ roots, then $x^{n}-1$ would have at most $c+(n-d)<d+n-d=n$ roots, contradicting the hypothesis.
(d) The IH applies to every divisor d of n, so for each $d \mid n, d<n$, we have $\varphi(d)$ elements of order d.
(e) The total number of solutions to $x^{n}-1$ is n. Every such solution either has order n or order d with $d \mid n$ and $d<n$. Adding up all of the latter type gives

$$
\sum_{d \mid n, d \neq n} \varphi(d)=\left(\sum_{d \mid n} \varphi(d)\right)-\varphi(n)=n-\varphi(n) .
$$

Thus, the number of solutions with order n is $\varphi(n)$.

(7) Proof of Proposition:

(a) Explain the following formula:

$$
n=\sum_{d \mid n} \#\{a \mid 1 \leq a \leq n \text { and } \operatorname{gcd}(a, n)=d\}
$$

(b) Explain ${ }^{2}$ why

$$
\#\{a \mid 1 \leq a \leq n \text { and } \operatorname{gcd}(a, n)=d\}=\varphi(n / d)
$$

(c) Finally, explain ${ }^{3}$ why

$$
\sum_{d \mid n} \varphi(n / d)=\sum_{d \mid n} \varphi(d)
$$

and complete the proof.
(a) Every integer between 1 and n occurs in exactly one of the sets on the right hand side.
(b) Following the hint, the integers between 1 and n whose gcd with n is d correspond to integers between 1 and n / d that are coprime with n / d. The phi function counts the latter.
(c) As d ranges through the divisors of $n, n / d$ goes through all of the divisors of n, obtaining each value once. Put together with the previous parts, the formula follows.
(8) Let p, q be distinct odd primes. Show that there is no primitive root of $\mathbb{Z}_{p q}$: i.e., there is no element of order $\varphi(p q)$ in $\mathbb{Z}_{p q}^{\times}$.

[^1]
[^0]: ${ }^{1}$ Hint: x^{m} has an inverse.

[^1]: ${ }^{2}$ Hint: You proved that if $\operatorname{gcd}(a, n)=d$, then $\operatorname{gcd}(a / d, n / d)=1$; also, if $\operatorname{gcd}(b, n / d)=1$, then $\operatorname{gcd}(b d, n)=d$.
 ${ }^{3}$ Hint: As d ranges through all the divisors of n, so does n / d.

