
PRIMITIVE ROOTS AND DISCRETE LOGARITHMS

PROPOSITION: Let p be a prime. Let p(x) be a polynomial of degree d with coefficients in Zp. Then
p(x) has at most d roots in Zp. �

LEMMA (FROM HW): If G is a group, g ∈ G, and n a positive integer such that gn = 1, then the order
of g divides n.

DEFINITION: Let n be a positive integer. An element g ∈ Z×n is a primitive root if the order of g in Z×n
equals φ(n) (the cardinality of Z×n ).

THEOREM: Let p be a prime number. Then there exists a primitive root in Z×p .

(1) Warmup with primitive roots:
(a) Check that [2] is a primitive root in Z5.
(b) Check that [3] is a primitive root in Z4.
(c) Find a primitive root in Z7.
(d) Show that there is no primitive root in Z8.

(2) Suppose that g = [a] is a primitive root in Zp.
(a) Show that1 if 0 ≤ m ≤ n < p− 1, and gm = gn, then m = n.
(b) Show that every element of Z×p can be written as gn for a unique integer n with 0 ≤ n < p− 1.
(c) Show that the relation y ∈ Z×p  [m] ∈ Zp−1 if y = gm is a well-defined function I : Z×p → Zp−1.

DEFINITION: If [a] is a primitive root in Zp, the function

Z×p → Zp−1 [b] 7→ [m] such that [b] = [a]m

is called the discrete logarithm or index of Z×p with base [a].

(3) Let p be a prime and [a] a primitive root in Zp. Show that the corresponding discrete logarithm
function I : Z×p → Zp−1 satisfies the property

I(xy) = I(x) + I(y) and I(xn) = [n]I(x)

for x, y ∈ Z×p and n ∈ N.

(4) (a) Verify that [2] is a primitive root in Z11 and compute the corresponding discrete logarithm.
(b) Use this function to find a square root of [3] in Z11.

PROPOSITION: Let n be a positive integer. Then
∑
d |n

ϕ(d) = n.

THEOREM: Let p be a prime. Suppose that there are n distinct solutions to xn = 1 in Zp. Then Z×p has
exactly ϕ(n) elements of order n.

(5) Explain how the theorem above implies that there exists a primitive root in Zp.

1Hint: xm has an inverse.



(6) Proof of Theorem (using the Proposition): Fix a prime number p.
(a) We proceed by strong induction on n. What does that mean concretely here? Complete the

case n = 1.
(b) Suppose that xn = 1 but the order of x in Z×p is not n. What does the Lemma say about the

order of x? Rephrase this in terms of x satisfying an equation.
(c) Suppose that d is a divisor of n, and write n = de. Note that

xn − 1 = (xd − 1)(xd(e−1) + xd(e−2) + · · ·+ xd + 1).

In particular, every solution of xn − 1 is a root of xd − 1 or of xd(e−1) + xd(e−2) + · · ·+ xd + 1.
Can xd− 1 have more than d roots in Zp? Can xd− 1 have less than d roots in Zp if xn− 1 has
n roots?

(d) Apply the induction hypothesis to show that the number of solutions to xn = 1 of order less
than n is

∑
d |n,d6=n ϕ(d).

(e) Apply the Proposition to conclude the proof of the Theorem.

(7) Proof of Proposition:
(a) Explain the following formula:

n =
∑
d |n

#{a | 1 ≤ a ≤ n and gcd(a, n) = d}.

(b) Explain2 why

#{a | 1 ≤ a ≤ n and gcd(a, n) = d} = ϕ(n/d).

(c) Finally, explain3 why ∑
d |n

ϕ(n/d) =
∑
d |n

ϕ(d)

and complete the proof.

(8) Let p, q be distinct odd primes. Show that there is no primitive root of Zpq: i.e., there is no element
of order ϕ(pq) in Z×pq.

2Hint: You proved that if gcd(a, n) = d, then gcd(a/d, n/d) = 1; also, if gcd(b, n/d) = 1, then gcd(bd, n) = d.
3Hint: As d ranges through all the divisors of n, so does n/d.


