Proposition: Let p be a prime. Let $p(x)$ be a polynomial of degree d with coefficients in \mathbb{Z}_{p}. Then $p(x)$ has at most d roots in \mathbb{Z}_{p}.

LEMMA (FROM HW): If G is a group, $g \in G$, and n a positive integer such that $g^{n}=1$, then the order of g divides n.

DEFINITION: Let n be a positive integer. An element $g \in \mathbb{Z}_{n}^{\times}$is a primitive root if the order of g in \mathbb{Z}_{n}^{\times} equals $\phi(n)$ (the cardinality of \mathbb{Z}_{n}^{\times}).

THEOREM: Let p be a prime number. Then there exists a primitive root in \mathbb{Z}_{p}^{\times}.
(1) Warmup with primitive roots:
(a) Check that [2] is a primitive root in \mathbb{Z}_{5}.
(b) Check that $[3]$ is a primitive root in \mathbb{Z}_{4}.
(c) Find a primitive root in \mathbb{Z}_{7}.
(d) Show that there is no primitive root in \mathbb{Z}_{8}.
(2) Suppose that $g=[a]$ is a primitive root in \mathbb{Z}_{p}.
(a) Show that ${ }^{1}$ if $0 \leq m \leq n<p-1$, and $g^{m}=g^{n}$, then $m=n$.
(b) Show that every element of \mathbb{Z}_{p}^{\times}can be written as g^{n} for a unique integer n with $0 \leq n<p-1$.
(c) Show that the relation $y \in \mathbb{Z}_{p}^{\times} \rightsquigarrow[m] \in \mathbb{Z}_{p-1}$ if $y=g^{m}$ is a well-defined function $I: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p-1}$.

Definition: If $[a]$ is a primitive root in \mathbb{Z}_{p}, the function

$$
\mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p-1} \quad[b] \mapsto[m] \text { such that }[b]=[a]^{m}
$$

is called the discrete logarithm or index of \mathbb{Z}_{p}^{\times}with base $[a]$.
(3) Let p be a prime and $[a]$ a primitive root in \mathbb{Z}_{p}. Show that the corresponding discrete logarithm function $I: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p-1}$ satisfies the property

$$
I(x y)=I(x)+I(y) \quad \text { and } \quad I\left(x^{n}\right)=[n] I(x)
$$

for $x, y \in \mathbb{Z}_{p}^{\times}$and $n \in \mathbb{N}$.
(4) (a) Verify that [2] is a primitive root in \mathbb{Z}_{11} and compute the corresponding discrete logarithm.
(b) Use this function to find a square root of $[3]$ in \mathbb{Z}_{11}.

Proposition: Let n be a positive integer. Then $\sum_{d \mid n} \varphi(d)=n$.
THEOREM: Let p be a prime. Suppose that there are n distinct solutions to $x^{n}=1$ in \mathbb{Z}_{p}. Then \mathbb{Z}_{p}^{\times}has exactly $\varphi(n)$ elements of order n.
(5) Explain how the theorem above implies that there exists a primitive root in \mathbb{Z}_{p}.

[^0](6) Proof of Theorem (using the Proposition): Fix a prime number p.
(a) We proceed by strong induction on n. What does that mean concretely here? Complete the case $n=1$.
(b) Suppose that $x^{n}=1$ but the order of x in \mathbb{Z}_{p}^{\times}is not n. What does the Lemma say about the order of x ? Rephrase this in terms of x satisfying an equation.
(c) Suppose that d is a divisor of n, and write $n=d e$. Note that
$$
x^{n}-1=\left(x^{d}-1\right)\left(x^{d(e-1)}+x^{d(e-2)}+\cdots+x^{d}+1\right) .
$$

In particular, every solution of $x^{n}-1$ is a root of $x^{d}-1$ or of $x^{d(e-1)}+x^{d(e-2)}+\cdots+x^{d}+1$. Can $x^{d}-1$ have more than d roots in \mathbb{Z}_{p} ? Can $x^{d}-1$ have less than d roots in \mathbb{Z}_{p} if $x^{n}-1$ has n roots?
(d) Apply the induction hypothesis to show that the number of solutions to $x^{n}=1$ of order less than n is $\sum_{d \mid n, d \neq n} \varphi(d)$.
(e) Apply the Proposition to conclude the proof of the Theorem.

(7) Proof of Proposition:

(a) Explain the following formula:

$$
n=\sum_{d \mid n} \#\{a \mid 1 \leq a \leq n \text { and } \operatorname{gcd}(a, n)=d\}
$$

(b) Explain ${ }^{2}$ why

$$
\#\{a \mid 1 \leq a \leq n \text { and } \operatorname{gcd}(a, n)=d\}=\varphi(n / d)
$$

(c) Finally, explain ${ }^{3}$ why

$$
\sum_{d \mid n} \varphi(n / d)=\sum_{d \mid n} \varphi(d)
$$

and complete the proof.
(8) Let p, q be distinct odd primes. Show that there is no primitive root of $\mathbb{Z}_{p q}$: i.e., there is no element of order $\varphi(p q)$ in $\mathbb{Z}_{p q}^{\times}$.

[^1]
[^0]: ${ }^{1}$ Hint: x^{m} has an inverse.

[^1]: ${ }^{2}$ Hint: You proved that if $\operatorname{gcd}(a, n)=d$, then $\operatorname{gcd}(a / d, n / d)=1$; also, if $\operatorname{gcd}(b, n / d)=1$, then $\operatorname{gcd}(b d, n)=d$.
 ${ }^{3}$ Hint: As d ranges through all the divisors of n, so does n / d.

