DEFINITION: A group is a set G equipped with a product operation

$$G \times G \to G \qquad (g,h) \mapsto gh$$

and an **identity** element $1 \in G$ such that

- the product is associative: (gh)k = g(hk) for all $g, h, k \in G$,
- g1 = 1g = g for all $g \in G$, and
- for every $g \in G$, there is an inverse element $g^{-1} \in G$ such that $gg^{-1} = g^{-1}g = 1$.

A group is **abelian** if the product is commutative: gh = hg for all $g, h \in G$. A **finite group** is a group G that is a finite set.

DEFINITION: Let G be a group and $g \in G$. The **order** of g is the smallest positive integer n such that $g^n = e$, if some such n exists, and ∞ if no such integer exists.

LAGRANGE'S THEOREM: Let G be a finite group and $g \in G$. Then the order of g is finite and divides the cardinality of the group G.

- (1) The additive group \mathbb{Z}_n : Let *n* be a positive integer.
 - (a) Show¹ that the set \mathbb{Z}_n with the addition operation and identity element [0] is a group. We will write \mathbb{Z}_n to denote this group with this operation in general.
 - (b) Find the order of each element in \mathbb{Z}_4 .
 - (c) Find the order of each element in \mathbb{Z}_5 .
 - (d) Check that Lagrange's theorem holds for \mathbb{Z}_4 and \mathbb{Z}_5 .
 - (a) The sum of any two congruence classes in \mathbb{Z}_n is a congruence class in \mathbb{Z}_n . Addition is associative since

[a] + ([b] + [c]) = [a] + [b + c] = [a + b + c] = [a + b] + [c] = ([a] + [b]) + [c].

The element [0] is an identity, since [0] + [a] = [0 + a] = [a] and similarly in the other order. There are inverses, namely [-a] + [a] = [-a + a] = [0].

- (b) [0] has order 1; [1] and [3] have order 4; and [2] has order 2.
- (c) [0] has order 1; and the rest have order 5.
- (d) Yes.
- (2) The group Z_n[×]: Let n be a positive integer.
 (a) Show that the set

$$\mathbb{Z}_n^{\times} := \{ a \in \mathbb{Z}_n \mid a \text{ is a unit in } \mathbb{Z}_n \}$$

with the multiplication operation and identity element [1] is a group. We will write \mathbb{Z}_n^{\times} to denote this group with this operation in general.

- (b) Find the order of each element in \mathbb{Z}_7^{\times} .
- (c) Find the order of each element in \mathbb{Z}_8^{\times} .
- (d) Check that Lagrange's theorem holds for \mathbb{Z}_7^{\times} and \mathbb{Z}_8^{\times} .

¹Even though we are saying "product" operation, write gh for the typical group operation, and 1 for the typical identity element, we can take $(g, h) \mapsto g + h$ here. We just need to check the three rules above.

- (a) First the product of units is a unit: if [a] has inverse [c] and [b] has inverse [d], then [a][b][c][d] = [1]. Associativity is similar to above. [1] is a unit and is the identity. We have inverses by definition.
- (b) [1] has order 1; [6] has order 2; [2] and [4] have order 3; and [3] and [5] have order 6.
- (c) [1] has order 1; and [3], [5], and [7] have order 2.
- (d) Yes.

FERMAT'S LITTLE THEOREM: Let p be a prime number and a an integer. If p does not divide a, then $a^{p-1} \equiv 1 \pmod{p}$.

- (3) Lagrange's Theorem implies Fermat's Little Theorem:
 - (a) Show that \mathbb{Z}_p^{\times} has exactly p-1 elements.
 - (b) Use Lagrange's theorem to show that if $[a] \in \mathbb{Z}_p^{\times}$, then $[a]^{p-1} = [1]$ in \mathbb{Z}_p .
 - (c) Deduce Fermat's Little Theorem.
 - (a) Every element of \mathbb{Z}_p except [0] has an inverse, since every number that is not a multiple of p is coprime to p.
 - (b) Let *e* be the order of [a], so $[a]^e = [1]$. Then p 1 = ef for some *f*, so $[a]^{p-1} = [a]^{ef} = ([a]^e)^f = [1]$.
 - (c) If p does not divide a, then $[a] \neq [0]$ and $[a] \in \mathbb{Z}_p^{\times}$. Then $[a]^{p-1} = [1]$ implies that $a^{p-1} \equiv 1 \pmod{p}$.
- (4) Use Fermat's Little Theorem to find the smallest nonnegative integer congruent to each of the following: (a) 7¹² (mod 13), (b) 7⁹⁶ (mod 13), (c) 7⁹⁸ (mod 13), (d) 7¹⁵⁰⁵ (mod 13).

(1) $7^{12} \equiv 1 \pmod{13}$ by FLT. (2) $7^{96} \equiv (7^{12})^8 \equiv 1 \pmod{13}$ (3) $7^{98} \equiv (7^{12})^8 7^2 \equiv 7^2 \equiv 10 \pmod{13}$ (4) $1505 = 125 \cdot 12 + 5$, so $7^{1505} \equiv 7^5 \equiv 11 \pmod{13}$.

DEFINITION: Let *n* be a positive integer. We define $\varphi(n)$ to be the number of elements of \mathbb{Z}_n^{\times} . We call this **Euler's phi function**.

PROPOSITION: Euler's phi function satisfies the following properties.

- (1) If p is a prime and n is a positive integer, then $\varphi(p^n) = p^{n-1}(p-1)$.
- (2) If m, n are coprime positive integers, then $\varphi(mn) = \varphi(m)\varphi(n)$.

EULER'S THEOREM: Let a, n be coprime integers, with n positive. Then

 $a^{\varphi(n)} \equiv 1 \pmod{n}.$

(5) Use the Proposition above to compute the following:

- $\varphi(41)$ $\varphi(15)$
- $\varphi(27)$ $\varphi(100)$.

(6) Use the Proposition above to compute the following:

- $\varphi(41) = 40.$
- $\varphi(27) = \varphi(3^3) = 3^2(3-1) = 18.$
- $\varphi(15) = \varphi(3)\varphi(5) = 2 \cdot 4 = 8.$
- $\varphi(100) = \varphi(2^2)\varphi(5^2) = 2(2-1)5(5-1) = 40.$

(7) Use Euler's Theorem to compute the last two digits of 7^{2003} .

Since $\varphi(100) = 40$, we know $7^{40} \equiv 1 \pmod{100}$. Then $7^{2003} = 7^{50 \cdot 40 + 3} \equiv (7^{40})^{50} 7^3 \equiv 7^3 \equiv 343 \equiv 43 \pmod{100}$,

so the last two digits are 43.

- (8) Euler's phi function and Euler's Theorem.
 - (a) Explain why Lagrange's Theorem implies Euler's Theorem.
 - (b) Explain why $\varphi(n)$ is equal to the number of positive integers less than n that are coprime to n.
 - (c) Prove the first part of the Proposition above.
 - (d) Use CRT to explain why the map

$$\mathbb{Z}_{mn} \xrightarrow{\pi} \mathbb{Z}_m \times \mathbb{Z}_n$$
$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$

is bijective.

- (e) Show² that $[a]_{mn}$ is a unit in \mathbb{Z}_{mn} if and only if $[a]_m$ is a unit in \mathbb{Z}_m and $[a]_n$ is a unit in \mathbb{Z}_n .
- (f) Conclude the proof of the second part of the Proposition above.

(a) Similar to Lagrange implies FLT.

- (b) Every congruence class is represented by nonnegative number less than n. The class of zero is not a unit, so any possible unit is represented by a positive integer less than n. We saw last time that [a] is a unit if and only if a and n are coprime.
- (c) a is coprime with p^n if and only if p does not divide n. We count the number of positive integers less than p^n that are not multiples of p, and get the formula above.
- (d) Note first that this is a well defined function: if two numbers are congruent modulo mn, they are congruent modulo m and modulo n. CRT says that any pair of residues modulo m and n correspond to a unique congruence class modulo mn; i.e., π is bijective.
- (e) For the forward direction, let [b] be an inverse of [a], so ab ≡ 1 (mod mn). Then ab ≡ 1 (mod m) and ab ≡ 1 (mod n), so [a] is a unit in Z_m and Z_n. For the reverse, let c, d be such that ac ≡ 1 (mod m) and ad ≡ 1 (mod n). By CRT, there is a b such that b ≡ c (mod m) and b ≡ d (mod n). Then ab ≡ ac ≡ 1 (mod m) and ab ≡ ad ≡ 1 (mod n). By the uniqueness part of CRT, ab ≡ 1 (mod mn), so a has an inverse mod mn.
- (f) By (d) and (e), every unit in \mathbb{Z}_{mn} corresponds to a pair consisting of a unit in \mathbb{Z}_m and a unit in \mathbb{Z}_n . Thus, the number of elements of \mathbb{Z}_{mn}^{\times} is the product of the number of elements in \mathbb{Z}_m^{\times} and \mathbb{Z}_n^{\times} .
- (9) Proof of Lagrange's Theorem: Let G be a finite group and $g \in G$. Let e be the order of g.
 - (a) Consider the list $1, g, \ldots, g^{e-1}$. Explain why these elements are all distinct.
 - (b) If $G = \{1, g, \dots, g^{e-1}\}$, explain why Lagrange's Theorem holds.

²For the forward direction, take an inverse $[b]_{mn}$ for $[a]_{mn}$ is a unit in \mathbb{Z}_{mn} and consider $[b]_m$ and $[b]_n$. For the reverse, take inverses $[c]_m$ and $[d]_n$ for $[a]_m$ and $[a]_n$ respectively, and apply CRT.

- (c) If $h_1 \in G \setminus \{1, g, \dots, g^{e-1}\}$, explain why the list of elements $h_1, h_1g, \dots, h_1g^{e-1}$ are all distinct. Then explain why $\{1, g, \dots, g^{e-1}\}$ and $\{h_1, h_1g, \dots, h_1g^{e-1}\}$ are disjoint.
- (d) Continue this process to form a table

Conclude the proof of the theorem.

- (a) If $g^a = g^b$ with a < b < e, then $1 = (g^{-1})^a g^a = (g^{-1})^a g^b = g^{b-a}$, which contradicts that e is the smallest exponent with $g^e = 1$.
- (b) Because the number of elements of G is the order of g.
- (c) If $hg^a = hg^b$ with a < b < e, then $g^a = h^{-1}hg^a = h^{-1}hg^b = g^b$, which we saw was impossible. If $g^a = hg^b$, then $g^{a-b} = g^ag^{-b} = hg^bg^{-b} = h$. But $g^{a-b} = g^{e+a-b}$ is on the first list.
- (d) Along similar lines, we get an array like this with the rows all distinct. Eventually we must have the whole group, because it is finite. Then the cardinality of G is (t + 1)e.