
THE UNIT GROUP, FERMAT’S LITTLE THEOREM, AND EULER’S THEOREM

DEFINITION: A group is a set G equipped with a product operation

G×G→ G (g, h) 7→ gh

and an identity element 1 ∈ G such that
• the product is associative: (gh)k = g(hk) for all g, h, k ∈ G,
• g1 = 1g = g for all g ∈ G, and
• for every g ∈ G, there is an inverse element g−1 ∈ G such that gg−1 = g−1g = 1.

A group is abelian if the product is commutative: gh = hg for all g, h ∈ G. A finite group is a group
G that is a finite set.

DEFINITION: Let G be a group and g ∈ G. The order of g is the smallest positive integer n such that
gn = e, if some such n exists, and∞ if no such integer exists.

LAGRANGE’S THEOREM: Let G be a finite group and g ∈ G. Then the order of g is finite and divides
the cardinality of the group G.

(1) The additive group Zn: Let n be a positive integer.
(a) Show1 that the set Zn with the addition operation and identity element [0] is a group. We will

write Zn to denote this group with this operation in general.
(b) Find the order of each element in Z4.
(c) Find the order of each element in Z5.
(d) Check that Lagrange’s theorem holds for Z4 and Z5.

(a) The sum of any two congruence classes in Zn is a congruence class in Zn. Addition is
associative since

[a] + ([b] + [c]) = [a] + [b+ c] = [a+ b+ c] = [a+ b] + [c] = ([a] + [b]) + [c].

The element [0] is an identity, since [0]+[a] = [0+a] = [a] and similarly in the other order.
There are inverses, namely [−a] + [a] = [−a+ a] = [0].

(b) [0] has order 1; [1] and [3] have order 4; and [2] has order 2.
(c) [0] has order 1; and the rest have order 5.
(d) Yes.

(2) The group Z×
n : Let n be a positive integer.

(a) Show that the set

Z×
n := {a ∈ Zn | a is a unit in Zn}

with the multiplication operation and identity element [1] is a group. We will write Z×
n to denote

this group with this operation in general.
(b) Find the order of each element in Z×

7 .
(c) Find the order of each element in Z×

8 .
(d) Check that Lagrange’s theorem holds for Z×

7 and Z×
8 .

1Even though we are saying “product” operation, write gh for the typical group operation, and 1 for the typical identity
element, we can take (g, h) 7→ g + h here. We just need to check the three rules above.



(a) First the product of units is a unit: if [a] has inverse [c] and [b] has inverse [d], then
[a][b][c][d] = [1]. Associativity is similar to above. [1] is a unit and is the identity. We
have inverses by definition.

(b) [1] has order 1; [6] has order 2; [2] and [4] have order 3; and [3] and [5] have order 6.
(c) [1] has order 1; and [3], [5], and [7] have order 2.
(d) Yes.

FERMAT’S LITTLE THEOREM: Let p be a prime number and a an integer. If p does not divide a, then

ap−1 ≡ 1 (mod p).

(3) Lagrange’s Theorem implies Fermat’s Little Theorem:
(a) Show that Z×

p has exactly p− 1 elements.
(b) Use Lagrange’s theorem to show that if [a] ∈ Z×

p , then [a]p−1 = [1] in Zp.
(c) Deduce Fermat’s Little Theorem.

(a) Every element of Zp except [0] has an inverse, since every number that is not a multiple of
p is coprime to p.

(b) Let e be the order of [a], so [a]e = [1]. Then p − 1 = ef for some f , so [a]p−1 = [a]ef =
([a]e)f = [1].

(c) If p does not divide a, then [a] 6= [0] and [a] ∈ Z×
p . Then [a]p−1 = [1] implies that ap−1 ≡ 1

(mod p).

(4) Use Fermat’s Little Theorem to find the smallest nonnegative integer congruent to each of the fol-
lowing: (a) 712 (mod 13), (b) 796 (mod 13), (c) 798 (mod 13), (d) 71505 (mod 13).

(1) 712 ≡ 1 (mod 13) by FLT.
(2) 796 ≡ (712)8 ≡ 1 (mod 13)
(3) 798 ≡ (712)872 ≡ 72 ≡ 10 (mod 13)
(4) 1505 = 125 · 12 + 5, so 71505 ≡ 75 ≡ 11 (mod 13).

DEFINITION: Let n be a positive integer. We define ϕ(n) to be the number of elements of Z×
n . We call

this Euler’s phi function.

PROPOSITION: Euler’s phi function satisfies the following properties.
(1) If p is a prime and n is a positive integer, then ϕ(pn) = pn−1(p− 1).
(2) If m,n are coprime positive integers, then ϕ(mn) = ϕ(m)ϕ(n).

EULER’S THEOREM: Let a, n be coprime integers, with n positive. Then

aϕ(n) ≡ 1 (mod n).

(5) Use the Proposition above to compute the following:
• ϕ(41)
• ϕ(27)

• ϕ(15)
• ϕ(100).



(6) Use the Proposition above to compute the following:
• ϕ(41) = 40.
• ϕ(27) = ϕ(33) = 32(3− 1) = 18.
• ϕ(15) = ϕ(3)ϕ(5) = 2 · 4 = 8.
• ϕ(100) = ϕ(22)ϕ(52) = 2(2− 1)5(5− 1) = 40.

(7) Use Euler’s Theorem to compute the last two digits of 72003.

Since ϕ(100) = 40, we know 740 ≡ 1 (mod 100). Then

72003 = 750·40+3 ≡ (740)5073 ≡ 73 ≡ 343 ≡ 43 (mod 100),

so the last two digits are 43.

(8) Euler’s phi function and Euler’s Theorem.
(a) Explain why Lagrange’s Theorem implies Euler’s Theorem.
(b) Explain why ϕ(n) is equal to the number of positive integers less than n that are coprime to n.
(c) Prove the first part of the Proposition above.
(d) Use CRT to explain why the map

Zmn
π−→ Zm × Zn

[a]mn 7→ ([a]m, [a]n)

is bijective.
(e) Show2 that [a]mn is a unit in Zmn if and only if [a]m is a unit in Zm and [a]n is a unit in Zn.
(f) Conclude the proof of the second part of the Proposition above.

(a) Similar to Lagrange implies FLT.
(b) Every congruence class is represented by nonnegative number less than n. The class of zero

is not a unit, so any possible unit is represented by a positive integer less than n. We saw
last time that [a] is a unit if and only if a and n are coprime.

(c) a is coprime with pn if and only if p does not divide n. We count the number of positive
integers less than pn that are not multiples of p, and get the formula above.

(d) Note first that this is a well defined function: if two numbers are congruent modulo mn,
they are congruent modulo m and modulo n. CRT says that any pair of residues modulo m
and n correspond to a unique congruence class modulo mn; i.e., π is bijective.

(e) For the forward direction, let [b] be an inverse of [a], so ab ≡ 1 (mod mn). Then ab ≡ 1
(mod m) and ab ≡ 1 (mod n), so [a] is a unit in Zm and Zn. For the reverse, let c, d be
such that ac ≡ 1 (mod m) and ad ≡ 1 (mod n). By CRT, there is a b such that b ≡ c
(mod m) and b ≡ d (mod n). Then ab ≡ ac ≡ 1 (mod m) and ab ≡ ad ≡ 1 (mod n).
By the uniqueness part of CRT, ab ≡ 1 (mod mn), so a has an inverse mod mn.

(f) By (d) and (e), every unit in Zmn corresponds to a pair consisting of a unit in Zm and a unit
in Zn. Thus, the number of elements of Z×

mn is the product of the number of elements in
Z×
m and Z×

n .

(9) Proof of Lagrange’s Theorem: Let G be a finite group and g ∈ G. Let e be the order of g.
(a) Consider the list 1, g, . . . , ge−1. Explain why these elements are all distinct.
(b) If G = {1, g, . . . , ge−1}, explain why Lagrange’s Theorem holds.

2For the forward direction, take an inverse [b]mn for [a]mn is a unit in Zmn and consider [b]m and [b]n. For the reverse, take
inverses [c]m and [d]n for [a]m and [a]n respectively, and apply CRT.



(c) If h1 ∈ G r {1, g, . . . , ge−1}, explain why the list of elements h1, h1g, . . . , h1ge−1 are all
distinct. Then explain why {1, g, . . . , ge−1} and {h1, h1g, . . . , h1ge−1} are disjoint.

(d) Continue this process to form a table

1 g . . . ge−1

h1 h1g . . . h1g
e−1

...
... . . . ...

ht htg . . . htg
e−1

Conclude the proof of the theorem.

(a) If ga = gb with a < b < e, then 1 = (g−1)aga = (g−1)agb = gb−a, which contradicts that e
is the smallest exponent with ge = 1.

(b) Because the number of elements of G is the order of g.
(c) If hga = hgb with a < b < e, then ga = h−1hga = h−1hgb = gb, which we saw was

impossible. If ga = hgb, then ga−b = gag−b = hgbg−b = h. But ga−b = ge+a−b is on the
first list.

(d) Along similar lines, we get an array like this with the rows all distinct. Eventually we must
have the whole group, because it is finite. Then the cardinality of G is (t+ 1)e.


