
THE UNIT GROUP, FERMAT’S LITTLE THEOREM, AND EULER’S THEOREM

DEFINITION: A group is a set G equipped with a product operation

G×G→ G (g, h) 7→ gh

and an identity element 1 ∈ G such that
• the product is associative: (gh)k = g(hk) for all g, h, k ∈ G,
• g1 = 1g = g for all g ∈ G, and
• for every g ∈ G, there is an inverse element g−1 ∈ G such that gg−1 = g−1g = 1.

A group is abelian if the product is commutative: gh = hg for all g, h ∈ G. A finite group is a group
G that is a finite set.

DEFINITION: Let G be a group and g ∈ G. The order of g is the smallest positive integer n such that
gn = e, if some such n exists, and∞ if no such integer exists.

LAGRANGE’S THEOREM: Let G be a finite group and g ∈ G. Then the order of g is finite and divides
the cardinality of the group G.

(1) The additive group Zn: Let n be a positive integer.
(a) Show1 that the set Zn with the addition operation and identity element [0] is a group. We will

write Zn to denote this group with this operation in general.
(b) Find the order of each element in Z4.
(c) Find the order of each element in Z5.
(d) Check that Lagrange’s theorem holds for Z4 and Z5.

(2) The group Z×
n : Let n be a positive integer.

(a) Show that the set
Z×
n := {a ∈ Zn | a is a unit in Zn}

with the multiplication operation and identity element [1] is a group. We will write Z×
n to denote

this group with this operation in general.
(b) Find the order of each element in Z×

7 .
(c) Find the order of each element in Z×

8 .
(d) Check that Lagrange’s theorem holds for Z×

7 and Z×
8 .

FERMAT’S LITTLE THEOREM: Let p be a prime number and a an integer. If p does not divide a, then

ap−1 ≡ 1 (mod p).

(3) Lagrange’s Theorem implies Fermat’s Little Theorem:
(a) Show that Z×

p has exactly p− 1 elements.
(b) Use Lagrange’s theorem to show that if [a] ∈ Z×

p , then [a]p−1 = [1] in Zp.
(c) Deduce Fermat’s Little Theorem.

(4) Use Fermat’s Little Theorem to find the smallest nonnegative integer congruent to each of the fol-
lowing: (a) 712 (mod 13), (b) 796 (mod 13), (c) 798 (mod 13), (d) 71505 (mod 13).

1Even though we are saying “product” operation, write gh for the typical group operation, and 1 for the typical identity
element, we can take (g, h) 7→ g + h here. We just need to check the three rules above.



DEFINITION: Let n be a positive integer. We define ϕ(n) to be the number of elements of Z×
n . We call

this Euler’s phi function.

PROPOSITION: Euler’s phi function satisfies the following properties.
(1) If p is a prime and n is a positive integer, then ϕ(pn) = pn−1(p− 1).
(2) If m,n are coprime positive integers, then ϕ(mn) = ϕ(m)ϕ(n).

EULER’S THEOREM: Let a, n be coprime integers, with n positive. Then

aϕ(n) ≡ 1 (mod n).

(5) Use the Proposition above to compute the following:
• ϕ(41)
• ϕ(27)

• ϕ(15)
• ϕ(100).

(6) Use Euler’s Theorem to compute the last two digits of 72003.

(7) Euler’s phi function and Euler’s Theorem.
(a) Explain why Lagrange’s Theorem implies Euler’s Theorem.
(b) Explain why ϕ(n) is equal to the number of positive integers less than n that are coprime to n.
(c) Prove the first part of the Proposition above.
(d) Use CRT to explain why the map

Zmn
π−→ Zm × Zn

[a]mn 7→ ([a]m, [a]n)

is bijective.
(e) Show2 that [a]mn is a unit in Zmn if and only if [a]m is a unit in Zm and [a]n is a unit in Zn.
(f) Conclude the proof of the second part of the Proposition above.

(8) Proof of Lagrange’s Theorem: Let G be a finite group and g ∈ G. Let e be the order of g.
(a) Consider the list 1, g, . . . , ge−1. Explain why these elements are all distinct.
(b) If G = {1, g, . . . , ge−1}, explain why Lagrange’s Theorem holds.
(c) If h1 ∈ G r {1, g, . . . , ge−1}, explain why the list of elements h1, h1g, . . . , h1g

e−1 are all
distinct. Then explain why {1, g, . . . , ge−1} and {h1, h1g, . . . , h1g

e−1} are disjoint.
(d) Continue this process to form a table

1 g . . . ge−1

h1 h1g . . . h1g
e−1

...
... . . . ...

ht htg . . . htg
e−1

Conclude the proof of the theorem.

2For the forward direction, take an inverse [b]mn for [a]mn is a unit in Zmn and consider [b]m and [b]n. For the reverse, take
inverses [c]m and [d]n for [a]m and [a]n respectively, and apply CRT.


