DEFINITION: A group is a set G equipped with a product operation

$$
G \times G \rightarrow G \quad(g, h) \mapsto g h
$$

and an identity element $1 \in G$ such that

- the product is associative: $(g h) k=g(h k)$ for all $g, h, k \in G$,
- $g 1=1 g=g$ for all $g \in G$, and
- for every $g \in G$, there is an inverse element $g^{-1} \in G$ such that $g g^{-1}=g^{-1} g=1$.

A group is abelian if the product is commutative: $g h=h g$ for all $g, h \in G$. A finite group is a group G that is a finite set.

Definition: Let G be a group and $g \in G$. The order of g is the smallest positive integer n such that $g^{n}=e$, if some such n exists, and ∞ if no such integer exists.

Lagrange's Theorem: Let G be a finite group and $g \in G$. Then the order of g is finite and divides the cardinality of the group G.
(1) The additive group \mathbb{Z}_{n} : Let n be a positive integer.
(a) Show ${ }^{1}$ that the set \mathbb{Z}_{n} with the addition operation and identity element [0] is a group. We will write \mathbb{Z}_{n} to denote this group with this operation in general.
(b) Find the order of each element in \mathbb{Z}_{4}.
(c) Find the order of each element in \mathbb{Z}_{5}.
(d) Check that Lagrange's theorem holds for \mathbb{Z}_{4} and \mathbb{Z}_{5}.
(2) The group \mathbb{Z}_{n}^{\times}: Let n be a positive integer.
(a) Show that the set

$$
\mathbb{Z}_{n}^{\times}:=\left\{a \in \mathbb{Z}_{n} \mid a \text { is a unit in } \mathbb{Z}_{n}\right\}
$$

with the multiplication operation and identity element [1] is a group. We will write \mathbb{Z}_{n}^{\times}to denote this group with this operation in general.
(b) Find the order of each element in \mathbb{Z}_{7}^{\times}.
(c) Find the order of each element in \mathbb{Z}_{8}^{\times}.
(d) Check that Lagrange's theorem holds for \mathbb{Z}_{7}^{\times}and \mathbb{Z}_{8}^{\times}.

Fermat's Little Theorem: Let p be a prime number and a an integer. If p does not divide a, then

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

(3) Lagrange's Theorem implies Fermat's Little Theorem:
(a) Show that \mathbb{Z}_{p}^{\times}has exactly $p-1$ elements.
(b) Use Lagrange's theorem to show that if $[a] \in \mathbb{Z}_{p}^{\times}$, then $[a]^{p-1}=[1]$ in \mathbb{Z}_{p}.
(c) Deduce Fermat's Little Theorem.
(4) Use Fermat's Little Theorem to find the smallest nonnegative integer congruent to each of the following: (a) $7^{12}(\bmod 13), \quad(b) 7^{96}(\bmod 13), \quad(c) 7^{98}(\bmod 13), \quad(d) 7^{1505}(\bmod 13)$.

[^0]Definition: Let n be a positive integer. We define $\varphi(n)$ to be the number of elements of \mathbb{Z}_{n}^{\times}. We call this Euler's phi function.

Proposition: Euler's phi function satisfies the following properties.
(1) If p is a prime and n is a positive integer, then $\varphi\left(p^{n}\right)=p^{n-1}(p-1)$.
(2) If m, n are coprime positive integers, then $\varphi(m n)=\varphi(m) \varphi(n)$.

EULER'S THEOREM: Let a, n be coprime integers, with n positive. Then

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

(5) Use the Proposition above to compute the following:

- $\varphi(41)$
- $\varphi(15)$
- $\varphi(27)$
- $\varphi(100)$.
(6) Use Euler's Theorem to compute the last two digits of 7^{2003}.
(7) Euler's phi function and Euler's Theorem.
(a) Explain why Lagrange's Theorem implies Euler's Theorem.
(b) Explain why $\varphi(n)$ is equal to the number of positive integers less than n that are coprime to n.
(c) Prove the first part of the Proposition above.
(d) Use CRT to explain why the map

$$
\begin{aligned}
& \mathbb{Z}_{m n} \xrightarrow{\boldsymbol{\pi}} \mathbb{Z}_{m} \times \mathbb{Z}_{n} \\
& {[a]_{m n} } \mapsto\left([a]_{m},[a]_{n}\right)
\end{aligned}
$$

is bijective.
(e) Show ${ }^{2}$ that $[a]_{m n}$ is a unit in $\mathbb{Z}_{m n}$ if and only if $[a]_{m}$ is a unit in \mathbb{Z}_{m} and $[a]_{n}$ is a unit in \mathbb{Z}_{n}.
(f) Conclude the proof of the second part of the Proposition above.
(8) Proof of Lagrange's Theorem: Let G be a finite group and $g \in G$. Let e be the order of g.
(a) Consider the list $1, g, \ldots, g^{e-1}$. Explain why these elements are all distinct.
(b) If $G=\left\{1, g, \ldots, g^{e-1}\right\}$, explain why Lagrange's Theorem holds.
(c) If $h_{1} \in G \backslash\left\{1, g, \ldots, g^{e-1}\right\}$, explain why the list of elements $h_{1}, h_{1} g, \ldots, h_{1} g^{e-1}$ are all distinct. Then explain why $\left\{1, g, \ldots, g^{e-1}\right\}$ and $\left\{h_{1}, h_{1} g, \ldots, h_{1} g^{e-1}\right\}$ are disjoint.
(d) Continue this process to form a table

Conclude the proof of the theorem.

[^1]
[^0]: ${ }^{1}$ Even though we are saying "product" operation, write $g h$ for the typical group operation, and 1 for the typical identity element, we can take $(g, h) \mapsto g+h$ here. We just need to check the three rules above.

[^1]: ${ }^{2}$ For the forward direction, take an inverse $[b]_{m n}$ for $[a]_{m n}$ is a unit in $\mathbb{Z}_{m n}$ and consider $[b]_{m}$ and $[b]_{n}$. For the reverse, take inverses $[c]_{m}$ and $[d]_{n}$ for $[a]_{m}$ and $[a]_{n}$ respectively, and apply CRT.

