DEFINITION: A group is a set G equipped with a product operation

$$G \times G \to G \qquad (g,h) \mapsto gh$$

and an **identity** element $1 \in G$ such that

- the product is associative: (gh)k = g(hk) for all $g, h, k \in G$,
- g1 = 1g = g for all $g \in G$, and
- for every $g \in G$, there is an inverse element $g^{-1} \in G$ such that $gg^{-1} = g^{-1}g = 1$.

A group is **abelian** if the product is commutative: gh = hg for all $g, h \in G$. A **finite group** is a group G that is a finite set.

DEFINITION: Let G be a group and $g \in G$. The **order** of g is the smallest positive integer n such that $g^n = e$, if some such n exists, and ∞ if no such integer exists.

LAGRANGE'S THEOREM: Let G be a finite group and $g \in G$. Then the order of g is finite and divides the cardinality of the group G.

- (1) The additive group \mathbb{Z}_n : Let *n* be a positive integer.
 - (a) Show¹ that the set \mathbb{Z}_n with the addition operation and identity element [0] is a group. We will write \mathbb{Z}_n to denote this group with this operation in general.
 - (b) Find the order of each element in \mathbb{Z}_4 .
 - (c) Find the order of each element in \mathbb{Z}_5 .
 - (d) Check that Lagrange's theorem holds for \mathbb{Z}_4 and \mathbb{Z}_5 .
- (2) The group \mathbb{Z}_n^{\times} : Let *n* be a positive integer.
 - (a) Show that the set

$$\mathbb{Z}_n^{\times} := \{ a \in \mathbb{Z}_n \mid a \text{ is a unit in } \mathbb{Z}_n \}$$

with the multiplication operation and identity element [1] is a group. We will write \mathbb{Z}_n^{\times} to denote this group with this operation in general.

- (b) Find the order of each element in \mathbb{Z}_7^{\times} .
- (c) Find the order of each element in \mathbb{Z}_8^{\times} .
- (d) Check that Lagrange's theorem holds for \mathbb{Z}_7^{\times} and \mathbb{Z}_8^{\times} .

FERMAT'S LITTLE THEOREM: Let p be a prime number and a an integer. If p does not divide a, then $a^{p-1} \equiv 1 \pmod{p}.$

- (3) Lagrange's Theorem implies Fermat's Little Theorem:
 - (a) Show that \mathbb{Z}_p^{\times} has exactly p-1 elements.
 - (b) Use Lagrange's theorem to show that if $[a] \in \mathbb{Z}_p^{\times}$, then $[a]^{p-1} = [1]$ in \mathbb{Z}_p .
 - (c) Deduce Fermat's Little Theorem.
- (4) Use Fermat's Little Theorem to find the smallest nonnegative integer congruent to each of the following: (a) 7¹² (mod 13), (b) 7⁹⁶ (mod 13), (c) 7⁹⁸ (mod 13), (d) 7¹⁵⁰⁵ (mod 13).

¹Even though we are saying "product" operation, write gh for the typical group operation, and 1 for the typical identity element, we can take $(g, h) \mapsto g + h$ here. We just need to check the three rules above.

DEFINITION: Let *n* be a positive integer. We define $\varphi(n)$ to be the number of elements of \mathbb{Z}_n^{\times} . We call this **Euler's phi function**.

PROPOSITION: Euler's phi function satisfies the following properties.

(1) If p is a prime and n is a positive integer, then $\varphi(p^n) = p^{n-1}(p-1)$.

(2) If m, n are coprime positive integers, then $\varphi(mn) = \varphi(m)\varphi(n)$.

EULER'S THEOREM: Let a, n be coprime integers, with n positive. Then

 $a^{\varphi(n)} \equiv 1 \pmod{n}.$

(5) Use the Proposition above to compute the following:

•	$\varphi(41)$	٠	$\varphi(15)$
•	$\varphi(27)$	•	$\varphi(100).$

- (6) Use Euler's Theorem to compute the last two digits of 7^{2003} .
- (7) Euler's phi function and Euler's Theorem.
 - (a) Explain why Lagrange's Theorem implies Euler's Theorem.
 - (b) Explain why $\varphi(n)$ is equal to the number of positive integers less than n that are coprime to n.
 - (c) Prove the first part of the Proposition above.
 - (d) Use CRT to explain why the map

$$\mathbb{Z}_{mn} \xrightarrow{\pi} \mathbb{Z}_m \times \mathbb{Z}_n$$
$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$

is bijective.

- (e) Show² that $[a]_{mn}$ is a unit in \mathbb{Z}_{mn} if and only if $[a]_m$ is a unit in \mathbb{Z}_m and $[a]_n$ is a unit in \mathbb{Z}_n .
- (f) Conclude the proof of the second part of the Proposition above.
- (8) Proof of Lagrange's Theorem: Let G be a finite group and $g \in G$. Let e be the order of g.
 - (a) Consider the list $1, g, \ldots, g^{e-1}$. Explain why these elements are all distinct.
 - (b) If $G = \{1, g, \dots, g^{e-1}\}$, explain why Lagrange's Theorem holds.
 - (c) If $h_1 \in G \setminus \{1, g, \dots, g^{e-1}\}$, explain why the list of elements $h_1, h_1g, \dots, h_1g^{e-1}$ are all distinct. Then explain why $\{1, g, \dots, g^{e-1}\}$ and $\{h_1, h_1g, \dots, h_1g^{e-1}\}$ are disjoint.
 - (d) Continue this process to form a table

Conclude the proof of the theorem.

²For the forward direction, take an inverse $[b]_{mn}$ for $[a]_{mn}$ is a unit in \mathbb{Z}_{mn} and consider $[b]_m$ and $[b]_n$. For the reverse, take inverses $[c]_m$ and $[d]_n$ for $[a]_m$ and $[a]_n$ respectively, and apply CRT.