
THE RING Zn, MODULAR UNITS, AND CRT

DEFINITION: A congruence class modulo K is a set of the form

[a] := {n ∈ Z | n ≡ a (mod K)}
for some a ∈ Z. We might also write [a]K to make clear what K is. A representative for a congruence
class is an element of the congruence class.

PROPOSITION: Given K > 0, the set of integers Z is the disjoint union of K congruence classes:

Z = [0] t [1] t · · · t [K − 1]. �

The ring ZK is the set of congruence classes modulo K:

{[0], [1], . . . , [K − 1]}
equipped with the operations

[a] + [b] = [a+ b] and [a][b] = [ab].

(1) Warmup with congruence classes:
(a) Find three distinct representatives of the congruence class [13] in Z5.
(b) Write a formula for all of the elements in the congruence class [13]5.
(c) Find the smallest nonnegative representative of the congruence class [228]13.
(d) True or false: [5]4 is an element of Z4.
(e) Fill in the blank: a ≡ b (mod n) if and only if in Zn.

(a) 13, 18, 23 (answers may vary).
(b) 13 + 5n for n ∈ Z.
(c) 7, by long division.
(d) True! We just often prefer to call it [1] instead.
(e) [a] = [b].

(2) Fill out the following + and × table for Z4. Write all of your entries in the form [0], [1], [2], or [3]:

+ [0] [1] [2] [3]

[0]
[1]
[2]
[3]

× [0] [1] [2] [3]

[0]
[1]
[2]
[3]

Explain the entry in the [3] row and [2] column of each table as a statement about integers and congru-
ence modulo 4 (instead of about elements of Z4).

+ [0] [1] [2] [3]

[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

× [0] [1] [2] [3]

[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]



(3) Translating between congruence equations in Z and literal equations in ZK : Consider the equation

(†) x2 + 3x ≡ 6 (mod n).

(a) Since we can add and multiply elements of Zn, the equation

(‡) y2 + [3]y = [6]

makes sense in Zn. Show that x = a is a solution of (†) if and only if y = [a] is a solution of (‡).
Conclude that the set of solutions to (†) is the union of the congruence classes

{[a] | y = [a] is a solution of (‡)}.

(b) What was special about the equation (†)? Formulate a general principle.

(a) Suppose that x = a is a solution of (†). Then [a]2 + 3[a] = [a2 + 3a] = [6] in Zn, since
a2 + 3a ≡ 6 (mod n), so y = [a] is a solution of (‡). Suppose that y = [a] is a solution of (‡).
Then [a2+3a] = [a]2+3[a] = [6] in Zn, so a2+3a ≡ 6 (mod n). Thus, a is a solution of (†).

(b) This worked because everything was make out of + and ×. If we have any polynomial con-
gruence equation modulo n, then it corresponds to an actual equation in Zn, and the solution
set over Z is the union of congruence classes corresponding to the solutions in Zn.

DEFINITION: We say that a number a is a unit modulo K if there is an integer solution x to ax ≡ 1
(mod K), and we say that such a number x is an inverse modulo K to a.

We say that a congruence class [a] is a unit in ZK if there is a congruence class x ∈ ZK such that
[a]x = [1], and we say that such a class x is an inverse to [a] in ZK .

(4) Warmup with units and inverses:
(a) Check that 4 is an inverse for 16 modulo 21. Find two more inverses for 16 modulo 21.
(b) Explain the following: b is an inverse for a modulo K if and only if [b] is an inverse for [a] in ZK .
(c) Explain the following: a is a unit modulo K if and only if [a] is a unit in ZK .
(d) Show that if x has an inverse in ZK then this inverse is unique.

(a) 4 · 16 = 64 ≡ 1 (mod 21), since 21|63. Also 25, 46. (Answers may vary.)
(b) As above ab ≡ 1 (mod K) if and only if [a][b] = [1] in ZK .
(c) a is a unit in ZK if and only if there is a b ∈ Z that is an inverse mod K, if and only if there is

a b such that [b] is an inverse to [a] in ZK , if and only if [a] is a unit in ZK .
(d) If [a][b] = [1] = [a][b′], then [b] = [b][a][b] = [b][a][b′] = [b′].

THEOREM: Let a and n be integers, with n positive. Then a is a unit modulo n if and only if a and
n are coprime.

(5) Proof of the Theorem / how to find inverses.
(a) Use the definition of congruent modulo n to rewrite the statement ax ≡ 1 (mod n) as a statement

just about integers.
(b) Prove the Theorem above.
(c) Find an inverse for 24 modulo 149.



(a) ax− 1 = bn for some b, so ax− bn = 1.
(b) We saw last time that this equation has a solution if and only if 1 is a multiple of gcd(a, b), i.e.,

a and b are coprime.
(c) We apply the Euclidean algorithm as last time.

149 = 6 · 24 + 5

24 = 4 · 5 + 4

5 = 1 · 4 + 1

5 = 1 · 149− 6 · 24
4 = 1 · 24− 4 · 5 = 1 · 24− 4 · (1 · 149− 6 · 24) = −4 · 149 + 25 · 24
1 = 1 · 5− 1 · 4 = (1 · 149− 6 · 24)− (−4 · 149 + 25 · 24) = 5 · 149− 31 · 24.

So −31 is an inverse for 24 modulo 149.

THEOREM (THE CHINESE REMAINDER THEOREM): Given m1, . . . ,mk > 0 integers such that mi and
mj are coprime for each i 6= j, and a1, . . . , ak ∈ Z, the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...
...

x ≡ ak (mod mk)

has a solution x ∈ Z. Moreover, the set of solutions forms a unique congruence class modulo m1m2 · · ·mk.

(6) Proof of CRT:
(a) Set m′i = m1 · · ·mi−1mi+1 · · ·mk to be the product of all of the m’s except the i-th. Explain why

mi and m′i are coprime.
(b) Let m∗i be an inverse of m′i modulo mi. (Why does one exist?) Show that

m′im
∗
i ≡ 1 (mod mi) and m′im

∗
i ≡ 0 (mod mj) for j 6= i.

(c) Find a solution in terms of a1, . . . , ak and m′1m
∗
1, . . . , m

′
km
∗
k.

(d) Show that if x′ ≡ x (mod m1m2 · · ·mk), then x′ is a solution as well.
(e) Show1 that if x′ is another solution, then x′ ≡ x (mod m1m2 · · ·mk).

(a) If p is a common prime factor of mi and m′i, then p must be a prime factor of one of the mj

with j 6= i, since m′i is the product of these. But this would contradict that mi and mj are
coprime.

(b) We know that m′i has an inverse modulo mi since these are coprime. Then m′im
∗
i ≡ 1

(mod mi) by definition of inverse, and m′im
∗
i ≡ 0 (mod mj) since mj divides m′i.

(c) Take x = a1m
′
1m
∗
1 + · · · + akm

′
km
∗
k. Taken modulo mi, this every term but the i-th is zero,

and the i-th is congruent to ai · 1 = ai, so x ≡ ai (mod mi) for each i.
(d) We can write x′ = x + dm1m2 · · ·mk. Then x′ ≡ ai + dm1m2 · · ·mk ≡ ai (mod mi) for

each i.
(e) Since x′ ≡ ai ≡ x (mod mi), then mi | (x′−x) for each i, and all mi are coprime, the product

divides x′ − x. This means x′ ≡ x (mod m1m2 · · ·mk).

1The following LEMMA may be useful: if a and b are coprime, and a and b both divide c, then ab divides c.



(7) Solve the following systems:
(a) {

x ≡ 4 (mod 11)

x ≡ 3 (mod 17)

(b) Find2 a number that leaves remainder 1 when divided by 3, a remainder of 2 when divided by 5,
and a remainder of 3 when divided by 7.

(c) {
x ≡ 4 (mod 6)

x ≡ 13 (mod 15)

(1) We find 2 is an inverse of 17 modulo 11 and 14 is an inverse of 11 modulo 17. So

x = 4 · 2 · 17 + 3 · 14 · 11 = 598

is a solution, and 598 + 187n is the general solution.
(2) We start by finding inverses of 35 modulo 3, 21 modulo 5, and 15 modulo 7; the numbers 2, 1, and

1 work, respectively. Then

x = 1 · 2 · 35 + 2 · 1 · 21 + 3 · 1 · 15 = 157

works. Since 3 ·5 ·7 = 105, every solution is of the form 157+105n. The smallest positive solution
is 52.

(3) We cannot apply the theorem yet! Let’s start by breaking the congruences down. Since 4 ≡ 1
(mod 3) and 4 ≡ 0 (mod 2), we can rewrite the first equation as x ≡ 0 (mod 2) and x ≡ 1
(mod 3). Likewise, we can break the second down by writing 13 ≡ 3 (mod 5) and 13 ≡ 1
(mod 3), so x ≡ 3 (mod 5) and x ≡ 1 (mod 3). Thus, we can get the system

x ≡ 0 (mod 2)

x ≡ 1 (mod 3)

x ≡ 3 (mod 5).

Now we can apply the CRT to solve. I got 28 + 30n.

(8) Let a, b, n be integers, with n > 0.
(a) When does the equation [a]x = [b] have a solution in Zn? Give an answer in terms of properties

of the integers a, b, and n that we have discussed in class.
(b) How many solutions does the equation [a]x = [b] have a solution in Zn? Give an answer in terms

of properties of the integers a, b, and n that we have discussed in class.

Key Points:
• Definition of congruence classes and Zn.
• Relationship between solving congruences and solving equations in Zn.
• A number is a unit modulo n if and only if a and n are coprime.
• How to find inverses modulo n.
• Using CRT to solve multiple congruences.

2Real problem from Master Sun’s Mathematical Manual (fourth century AD)!


