DEFINITION: A congruence class modulo K is a set of the form

$$
[a]:=\{n \in \mathbb{Z} \mid n \equiv a \quad(\bmod K)\}
$$

for some $a \in \mathbb{Z}$. We might also write $[a]_{K}$ to make clear what K is. A representative for a congruence class is an element of the congruence class.

Proposition: Given $K>0$, the set of integers \mathbb{Z} is the disjoint union of K congruence classes:

$$
\mathbb{Z}=[0] \sqcup[1] \sqcup \cdots \sqcup[K-1] .
$$

The ring \mathbb{Z}_{K} is the set of congruence classes modulo K :

$$
\{[0],[1], \ldots,[K-1]\}
$$

equipped with the operations

$$
[a]+[b]=[a+b] \quad \text { and } \quad[a][b]=[a b] .
$$

(1) Warmup with congruence classes:
(a) Find three distinct representatives of the congruence class $[13]$ in \mathbb{Z}_{5}.
(b) Write a formula for all of the elements in the congruence class $[13]_{5}$.
(c) Find the smallest nonnegative representative of the congruence class $[228]_{13}$.
(d) True or false: $[5]_{4}$ is an element of \mathbb{Z}_{4}.
(e) Fill in the blank: $a \equiv b(\bmod n)$ if and only if \qquad in \mathbb{Z}_{n}.
(a) $13,18,23$ (answers may vary).
(b) $13+5 n$ for $n \in \mathbb{Z}$.
(c) 7, by long division.
(d) True! We just often prefer to call it [1] instead.
(e) $[a]=[b]$.
(2) Fill out the following + and \times table for \mathbb{Z}_{4}. Write all of your entries in the form $[0],[1],[2]$, or $[3]$:

+	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$				
$[1]$				
$[2]$				
$[3]$				

\times	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$				
$[1]$				
$[2]$				
$[3]$				

Explain the entry in the [3] row and [2] column of each table as a statement about integers and congruence modulo 4 (instead of about elements of \mathbb{Z}_{4}).

+	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$
$[1]$	$[1]$	$[2]$	$[3]$	$[0]$
$[2]$	$[2]$	$[3]$	$[0]$	$[1]$
$[3]$	$[3]$	$[0]$	$[1]$	$[2]$

\times	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$
$[2]$	$[0]$	$[2]$	$[0]$	$[2]$
$[3]$	$[0]$	$[3]$	$[2]$	$[1]$

(3) Translating between congruence equations in \mathbb{Z} and literal equations in \mathbb{Z}_{K} : Consider the equation

$$
x^{2}+3 x \equiv 6 \quad(\bmod n)
$$

(a) Since we can add and multiply elements of \mathbb{Z}_{n}, the equation

$$
y^{2}+[3] y=[6]
$$

makes sense in \mathbb{Z}_{n}. Show that $x=a$ is a solution of (\dagger) if and only if $y=[a]$ is a solution of (\ddagger). Conclude that the set of solutions to (\dagger) is the union of the congruence classes

$$
\{[a] \mid y=[a] \text { is a solution of }(\ddagger)\} .
$$

(b) What was special about the equation (\dagger)? Formulate a general principle.
(a) Suppose that $x=a$ is a solution of (\dagger). Then $[a]^{2}+3[a]=\left[a^{2}+3 a\right]=[6]$ in \mathbb{Z}_{n}, since $a^{2}+3 a \equiv 6(\bmod n)$, so $y=[a]$ is a solution of (\ddagger). Suppose that $y=[a]$ is a solution of (\ddagger). Then $\left[a^{2}+3 a\right]=[a]^{2}+3[a]=[6]$ in \mathbb{Z}_{n}, so $a^{2}+3 a \equiv 6(\bmod n)$. Thus, a is a solution of (\dagger).
(b) This worked because everything was make out of + and \times. If we have any polynomial congruence equation modulo n, then it corresponds to an actual equation in \mathbb{Z}_{n}, and the solution set over \mathbb{Z} is the union of congruence classes corresponding to the solutions in \mathbb{Z}_{n}.

DEFINITION: We say that a number a is a unit modulo K if there is an integer solution x to $a x \equiv 1$ $(\bmod K)$, and we say that such a number x is an inverse modulo K to a.

We say that a congruence class $[a]$ is a unit in \mathbb{Z}_{K} if there is a congruence class $x \in \mathbb{Z}_{K}$ such that $[a] x=[1]$, and we say that such a class x is an inverse to $[a]$ in \mathbb{Z}_{K}.
(4) Warmup with units and inverses:
(a) Check that 4 is an inverse for 16 modulo 21 . Find two more inverses for 16 modulo 21.
(b) Explain the following: b is an inverse for a modulo K if and only if $[b]$ is an inverse for $[a]$ in \mathbb{Z}_{K}.
(c) Explain the following: a is a unit modulo K if and only if $[a]$ is a unit in \mathbb{Z}_{K}.
(d) Show that if x has an inverse in \mathbb{Z}_{K} then this inverse is unique.
(a) $4 \cdot 16=64 \equiv 1(\bmod 21)$, since $21 \mid 63$. Also 25,46 . (Answers may vary.)
(b) As above $a b \equiv 1(\bmod K)$ if and only if $[a][b]=[1]$ in \mathbb{Z}_{K}.
(c) a is a unit in \mathbb{Z}_{K} if and only if there is a $b \in \mathbb{Z}$ that is an inverse $\bmod K$, if and only if there is a b such that $[b]$ is an inverse to $[a]$ in \mathbb{Z}_{K}, if and only if $[a]$ is a unit in \mathbb{Z}_{K}.
(d) If $[a][b]=[1]=[a]\left[b^{\prime}\right]$, then $[b]=[b][a][b]=[b][a]\left[b^{\prime}\right]=\left[b^{\prime}\right]$.

THEOREM: Let a and n be integers, with n positive. Then a is a unit modulo n if and only if a and n are coprime.
(5) Proof of the Theorem / how to find inverses.
(a) Use the definition of congruent modulo n to rewrite the statement $a x \equiv 1(\bmod n)$ as a statement just about integers.
(b) Prove the Theorem above.
(c) Find an inverse for 24 modulo 149.
(a) $a x-1=b n$ for some b, so $a x-b n=1$.
(b) We saw last time that this equation has a solution if and only if 1 is a multiple of $\operatorname{gcd}(a, b)$, i.e., a and b are coprime.
(c) We apply the Euclidean algorithm as last time.

$$
\begin{aligned}
149 & =6 \cdot 24+5 \\
24 & =4 \cdot 5+4 \\
5 & =1 \cdot 4+1 \\
5 & =1 \cdot 149-6 \cdot 24 \\
4 & =1 \cdot 24-4 \cdot 5=1 \cdot 24-4 \cdot(1 \cdot 149-6 \cdot 24)=-4 \cdot 149+25 \cdot 24 \\
1 & =1 \cdot 5-1 \cdot 4=(1 \cdot 149-6 \cdot 24)-(-4 \cdot 149+25 \cdot 24)=5 \cdot 149-31 \cdot 24 .
\end{aligned}
$$

So -31 is an inverse for 24 modulo 149 .

Theorem (The Chinese Remainder Theorem): Given $m_{1}, \ldots, m_{k}>0$ integers such that m_{i} and m_{j} are coprime for each $i \neq j$, and $a_{1}, \ldots, a_{k} \in \mathbb{Z}$, the system of congruences

$$
\left\{\begin{array}{cc}
x \equiv a_{1} & \left(\bmod m_{1}\right) \\
x \equiv a_{2} & \left(\bmod m_{2}\right) \\
\vdots & \vdots \\
x \equiv a_{k} & \left(\bmod m_{k}\right)
\end{array}\right.
$$

has a solution $x \in \mathbb{Z}$. Moreover, the set of solutions forms a unique congruence class modulo $m_{1} m_{2} \cdots m_{k}$.
(6) Proof of CRT:
(a) Set $m_{i}^{\prime}=m_{1} \cdots m_{i-1} m_{i+1} \cdots m_{k}$ to be the product of all of the m 's except the i-th. Explain why m_{i} and m_{i}^{\prime} are coprime.
(b) Let m_{i}^{*} be an inverse of m_{i}^{\prime} modulo m_{i}. (Why does one exist?) Show that

$$
m_{i}^{\prime} m_{i}^{*} \equiv 1 \quad\left(\bmod m_{i}\right) \quad \text { and } \quad m_{i}^{\prime} m_{i}^{*} \equiv 0 \quad\left(\bmod m_{j}\right) \text { for } j \neq i .
$$

(c) Find a solution in terms of a_{1}, \ldots, a_{k} and $m_{1}^{\prime} m_{1}^{*}, \ldots, m_{k}^{\prime} m_{k}^{*}$.
(d) Show that if $x^{\prime} \equiv x\left(\bmod m_{1} m_{2} \cdots m_{k}\right)$, then x^{\prime} is a solution as well.
(e) Show 1 that if x^{\prime} is another solution, then $x^{\prime} \equiv x\left(\bmod m_{1} m_{2} \cdots m_{k}\right)$.
(a) If p is a common prime factor of m_{i} and m_{i}^{\prime}, then p must be a prime factor of one of the m_{j} with $j \neq i$, since m_{i}^{\prime} is the product of these. But this would contradict that m_{i} and m_{j} are coprime.
(b) We know that m_{i}^{\prime} has an inverse modulo m_{i} since these are coprime. Then $m_{i}^{\prime} m_{i}^{*} \equiv 1$ $\left(\bmod m_{i}\right)$ by definition of inverse, and $m_{i}^{\prime} m_{i}^{*} \equiv 0\left(\bmod m_{j}\right)$ since m_{j} divides m_{i}^{\prime}.
(c) Take $x=a_{1} m_{1}^{\prime} m_{1}^{*}+\cdots+a_{k} m_{k}^{\prime} m_{k}^{*}$. Taken modulo m_{i}, this every term but the i-th is zero, and the i-th is congruent to $a_{i} \cdot 1=a_{i}$, so $x \equiv a_{i}\left(\bmod m_{i}\right)$ for each i.
(d) We can write $x^{\prime}=x+d m_{1} m_{2} \cdots m_{k}$. Then $x^{\prime} \equiv a_{i}+d m_{1} m_{2} \cdots m_{k} \equiv a_{i}\left(\bmod m_{i}\right)$ for each i.
(e) Since $x^{\prime} \equiv a_{i} \equiv x\left(\bmod m_{i}\right)$, then $m_{i} \mid\left(x^{\prime}-x\right)$ for each i, and all m_{i} are coprime, the product divides $x^{\prime}-x$. This means $x^{\prime} \equiv x\left(\bmod m_{1} m_{2} \cdots m_{k}\right)$.

[^0](7) Solve the following systems:
(a)
\[

$$
\begin{cases}x & \equiv 4 \quad(\bmod 11) \\ x & \equiv 3 \quad(\bmod 17)\end{cases}
$$
\]

(b) Find ${ }^{2}$ a number that leaves remainder 1 when divided by 3 , a remainder of 2 when divided by 5 , and a remainder of 3 when divided by 7 .
(c)

$$
\left\{\begin{array}{l}
x \equiv 4 \quad(\bmod 6) \\
x \equiv 13 \quad(\bmod 15)
\end{array}\right.
$$

(1) We find 2 is an inverse of 17 modulo 11 and 14 is an inverse of 11 modulo 17 . So

$$
x=4 \cdot 2 \cdot 17+3 \cdot 14 \cdot 11=598
$$

is a solution, and $598+187 n$ is the general solution.
(2) We start by finding inverses of 35 modulo 3 , 21 modulo 5 , and 15 modulo 7 ; the numbers 2 , 1 , and 1 work, respectively. Then

$$
x=1 \cdot 2 \cdot 35+2 \cdot 1 \cdot 21+3 \cdot 1 \cdot 15=157
$$

works. Since $3 \cdot 5 \cdot 7=105$, every solution is of the form $157+105 n$. The smallest positive solution is 52 .
(3) We cannot apply the theorem yet! Let's start by breaking the congruences down. Since $4 \equiv 1$ $(\bmod 3)$ and $4 \equiv 0(\bmod 2)$, we can rewrite the first equation as $x \equiv 0(\bmod 2)$ and $x \equiv 1$ $(\bmod 3)$. Likewise, we can break the second down by writing $13 \equiv 3(\bmod 5)$ and $13 \equiv 1$ $(\bmod 3)$, so $x \equiv 3(\bmod 5)$ and $x \equiv 1(\bmod 3)$. Thus, we can get the system

$$
\begin{cases}x \equiv 0 & (\bmod 2) \\ x \equiv 1 & (\bmod 3) \\ x \equiv 3 & (\bmod 5)\end{cases}
$$

Now we can apply the CRT to solve. I got $28+30 n$.
(8) Let a, b, n be integers, with $n>0$.
(a) When does the equation $[a] x=[b]$ have a solution in \mathbb{Z}_{n} ? Give an answer in terms of properties of the integers a, b, and n that we have discussed in class.
(b) How many solutions does the equation $[a] x=[b]$ have a solution in \mathbb{Z}_{n} ? Give an answer in terms of properties of the integers a, b, and n that we have discussed in class.

Key Points:

- Definition of congruence classes and \mathbb{Z}_{n}.
- Relationship between solving congruences and solving equations in \mathbb{Z}_{n}.
- A number is a unit modulo n if and only if a and n are coprime.
- How to find inverses modulo n.
- Using CRT to solve multiple congruences.

[^1]
[^0]: ${ }^{1}$ The following Lemma may be useful: if a and b are coprime, and a and b both divide c, then $a b$ divides c.

[^1]: ${ }^{2}$ Real problem from Master Sun's Mathematical Manual (fourth century AD)!

