DEFINITION: A congruence class modulo K is a set of the form $[a] := \{n \in \mathbb{Z} \mid n \equiv a \pmod{K}\}$ for some $a \in \mathbb{Z}$. We might also write $[a]_K$ to make clear what K is. A representative for a congruence class is an element of the congruence class. PROPOSITION: Given K > 0, the set of integers \mathbb{Z} is the disjoint union of K congruence classes: $\mathbb{Z} = [0] \sqcup [1] \sqcup \cdots \sqcup [K-1].$

 $\{[0], [1], \ldots, [K-1]\}$

equipped with the operations

$$[a] + [b] = [a + b]$$
 and $[a][b] = [ab]$.

- (1) Warmup with congruence classes:
 - (a) Find three distinct representatives of the congruence class [13] in \mathbb{Z}_5 .
 - (b) Write a formula for all of the elements in the congruence class $[13]_5$.
 - (c) Find the smallest nonnegative representative of the congruence class $[228]_{13}$.
 - (d) True or false: $[5]_4$ is an element of \mathbb{Z}_4 .
 - (e) Fill in the blank: $a \equiv b \pmod{n}$ if and only if _____ in \mathbb{Z}_n .
- (2) Fill out the following + and × table for \mathbb{Z}_4 . Write all of your entries in the form [0], [1], [2], or [3]:

+	[0]	[1]	[2]	[3]]	×	[0]	[1]	[2]	[3]
[0]						[0]				
[1]						[1]				
[2]]	[2]				
[3]						[3]				

Explain the entry in the [3] row and [2] column of each table as a statement about integers and congruence modulo 4 (instead of about elements of \mathbb{Z}_4).

(3) Translating between congruence equations in \mathbb{Z} and literal equations in \mathbb{Z}_K : Consider the equation

$$(\dagger) x^2 + 3x \equiv 6 \pmod{n}.$$

(a) Since we can add and multiply elements of \mathbb{Z}_n , the equation

(‡)
$$y^2 + [3]y = [6]$$

makes sense in \mathbb{Z}_n . Show that x = a is a solution of (\dagger) if and only if y = [a] is a solution of (\ddagger) . Conclude that the set of solutions to (\dagger) is the union of the congruence classes

 $\{[a] \mid y = [a] \text{ is a solution of } (\ddagger) \}.$

(b) What was special about the equation (†)? Formulate a general principle.

DEFINITION: We say that a number a is a **unit modulo** K if there is an integer solution x to $ax \equiv 1 \pmod{K}$, and we say that such a number x is an **inverse modulo** K to a.

We say that a congruence class [a] is a **unit** in \mathbb{Z}_K if there is a congruence class $x \in \mathbb{Z}_K$ such that [a]x = [1], and we say that such a class x is an **inverse** to [a] in \mathbb{Z}_K .

- (4) Warmup with units and inverses:
 - (a) Check that 4 is an inverse for 16 modulo 21. Find two more inverses for 16 modulo 21.
 - (b) Explain the following: b is an inverse for a modulo K if and only if [b] is an inverse for [a] in \mathbb{Z}_K .
 - (c) Explain the following: a is a unit modulo K if and only if [a] is a unit in \mathbb{Z}_K .
 - (d) Show that if x has an inverse in \mathbb{Z}_K then this inverse is unique.

THEOREM: Let a and n be integers, with n positive. Then a is a unit modulo n if and only if a and n are coprime.

- (5) Proof of the Theorem / how to find inverses.
 - (a) Use the definition of congruent modulo n to rewrite the statement $ax \equiv 1 \pmod{n}$ as a statement just about integers.
 - (b) Prove the Theorem above.
 - (c) Find an inverse for 24 modulo 149.

THEOREM (THE CHINESE REMAINDER THEOREM): Given $m_1, \ldots, m_k > 0$ integers such that m_i and m_j are coprime for each $i \neq j$, and $a_1, \ldots, a_k \in \mathbb{Z}$, the system of congruences

$$x \equiv a_1 \pmod{m_1} x \equiv a_2 \pmod{m_2} \vdots \qquad \vdots \\ x \equiv a_k \pmod{m_k}$$

has a solution $x \in \mathbb{Z}$. Moreover, the set of solutions forms a unique congruence class modulo $m_1 m_2 \cdots m_k$.

- (6) Proof of CRT:
 - (a) Set $m'_i = m_1 \cdots m_{i-1} m_{i+1} \cdots m_k$ to be the product of all of the *m*'s except the *i*-th. Explain why m_i and m'_i are coprime.
 - (b) Let m_i^* be an inverse of m_i' modulo m_i . (Why does one exist?) Show that

 $m'_i m^*_i \equiv 1 \pmod{m_i}$ and $m'_i m^*_i \equiv 0 \pmod{m_j}$ for $j \neq i$.

- (c) Find a solution in terms of a_1, \ldots, a_k and $m'_1 m^*_1, \ldots, m'_k m^*_k$.
- (d) Show that if $x' \equiv x \pmod{m_1 m_2 \cdots m_k}$, then x' is a solution as well.
- (e) Show¹ that if x' is another solution, then $x' \equiv x \pmod{m_1 m_2 \cdots m_k}$.

¹The following LEMMA may be useful: if a and b are coprime, and a and b both divide c, then ab divides c.

(7) Solve the following systems:

(a)

$$\begin{cases} x \equiv 4 \pmod{11} \\ x \equiv 3 \pmod{17} \end{cases}$$

(b) Find² a number that leaves remainder 1 when divided by 3, a remainder of 2 when divided by 5, and a remainder of 3 when divided by 7.

(c)

$$\begin{cases} x \equiv 4 \pmod{6} \\ x \equiv 13 \pmod{15} \end{cases}$$

- (8) Let a, b, n be integers, with n > 0.
 - (a) When does the equation [a]x = [b] have a solution in \mathbb{Z}_n ? Give an answer in terms of properties of the integers a, b, and n that we have discussed in class.
 - (b) How many solutions does the equation [a]x = [b] have a solution in \mathbb{Z}_n ? Give an answer in terms of properties of the integers a, b, and n that we have discussed in class.

Key Points:

- Definition of congruence classes and \mathbb{Z}_n .
- Relationship between solving congruences and solving equations in \mathbb{Z}_n .
- A number is a unit modulo *n* if and only if *a* and *n* are coprime.
- How to find inverses modulo *n*.
- Using CRT to solve multiple congruences.

²Real problem from Master Sun's Mathematical Manual (fourth century AD)!