DEfinition: The greatest common divisor of two integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest integer that divides a and b. Two integers a and b are coprime if $\operatorname{gcd}(a, b)=1$.

The Euclidean algorithm is an algorithm to find the greatest common divisor of two integers $a \geq b \geq 1$. Here is how it works:
(I) Start with $a_{0}:=a, b_{0}:=b$, and $n=0$.
(II) Apply long division / division algorithm to write $a_{n}:=q_{n} b_{n}+r_{n}$ with $0 \leq r_{n}<b_{n}$.
(III) If $r_{n}=0$, STOP; the greatest common divisor of a and b is b_{n}. Else, set $a_{n+1}:=b_{n}, b_{n+1}:=r_{n}$, and return to Step (II).
It is a THEOREM from Math 310 that the Euclidean algorithm terminates and outputs the correct value.
An expression of the form $r a+s b$ with $r, s \in \mathbb{Z}$ is a linear combination of a and b.
Corollary: If a, b are integers, then $\operatorname{gcd}(a, b)$ can be realized as a linear combination of a and b. Concretely, we can use the Euclidean algorithm to do this.
(1) Warumup with GCDs:
(a) Let a, b be nonzero integers. Explain why ${ }^{1}$ that $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$.
(b) Let a, b be nonzero integers and $d=\operatorname{gcd}(a, b)$. Show that a / d and b / d are coprime.
(c) Given prime factorizations of two positive integers a and b, explain ${ }^{2}$ how to find $\operatorname{gcd}(a, b)$ using the prime factorizations (not the Euclidean algorithm).
(a) The divisors of a are exactly the same as the divisors of $|a|$, and likewise with b. The conclusion is then clear.
(b) Suppose that n divides a / d and b / d. Write $a / d=n a^{\prime}$ and $b / d=n b^{\prime}$, so $a=n d a^{\prime}$ and $b=n d b^{\prime}$. If $n>1$, then $n d>d$ is a common divisor of a / d and b / d, which contradicts the definition of GCD.
(c) For each prime factor p_{i} of a and b, take the minimum of the multiplicity of p_{i} in the factorization of a and the multiplicity of p_{i} in the factorization of b; the product of the p_{i} 's to these powers is the GCD.
(2) The following calculations correspond to running the Euclidean algorithm with 524 and 148 :
(ii)

$$
\begin{array}{rlrl}
524 & =148 \cdot 3+80 & 0 & \leqslant 80<148 \\
148 & =80 \cdot 1+68 & 0 & \leqslant 68<80 \\
80 & =68 \cdot 1+12 & 0 & \leqslant 12<68 \\
68 & =12 \cdot 5+8 & 0 \leqslant 8<12 \\
12 & =8 \cdot 1+4 & 0 \leqslant 4<8 \\
8 & =4 \cdot 2+0 &
\end{array}
$$

(a) Identify the numbers a_{n} and b_{n} in the notation of the Euclidean algorithm as stated above.
(b) What is the greatest common divisor of 524 and 148 ?

[^0]$a_{0}=524, b_{0}=a_{1}=148, b_{1}=a_{2}=80, b_{2}=a_{3}=68, b_{3}=a_{4}=12, b_{4}=a_{5}=8, b_{5}=4$. The GCD is 4 .
(3) Continuing this example...
(a) Use equation (i) to express 80 as a linear combination of 524 and 148.
(b) Use equation (ii) to express 68 as a linear combination of 148 and 80 . Use this and the previous part to express 68 as a linear combination of 524 and 148.
(c) Express 12 as a linear combination of 524 and 148.
(d) Express $4=(524,148)$ as a linear combination of 524 and 148.
\[

$$
\begin{aligned}
80 & =1 \cdot 524-3 \cdot 148 \\
68 & =1 \cdot 148-1 \cdot 80=1 \cdot 148-1 \cdot(1 \cdot 524-3 \cdot 148) \\
& =-1 \cdot 524+4 \cdot 148 \\
12 & =1 \cdot 80-1 \cdot 68=1 \cdot(1 \cdot 524-3 \cdot 148)-1 \cdot(-1 \cdot 524+4 \cdot 148) \\
& =2 \cdot 524-7 \cdot 148 \\
8 & =1 \cdot 68-5 \cdot 12=1 \cdot(-1 \cdot 524+4 \cdot 148)-5 \cdot(2 \cdot 524-7 \cdot 148) \\
& =-11 \cdot 524+39 \cdot 148 \\
4 & =1 \cdot 12-1 \cdot 8=1 \cdot(2 \cdot 524-7 \cdot 148)-1 \cdot(-11 \cdot 524+39 \cdot 148) \\
& =13 \cdot 524-46 \cdot 148 .
\end{aligned}
$$
\]

(4) Use the Euclidean algorithm to find the GCD of 184 and 99, and to express this GCD as a linear combination of 184 and 99.

$$
\begin{aligned}
184 & =1 \cdot 99+85 \\
99 & =1 \cdot 85+14 \\
85 & =6 \cdot 14+1 \\
14 & =14 \cdot 1+0
\end{aligned}
$$

so the GCD is 1 .

$$
\begin{aligned}
85 & =1 \cdot 184-1 \cdot 99 \\
14 & =1 \cdot 99-1 \cdot 85=1 \cdot 99-1 \cdot(1 \cdot 184-1 \cdot 99)=-1 \cdot 184+2 \cdot 99 \\
1 & =1 \cdot 85-6 \cdot 14=1 \cdot(1 \cdot 184-1 \cdot 99)-6 \cdot(-1 \cdot 184+2 \cdot 99)=7 \cdot 184-13 \cdot 85 .
\end{aligned}
$$

We now know everything we need to solve all equations of the form $a x+b y=c$ over the integers! A equation of this form considered over \mathbb{Z} is called a linear Diophantine equation.

Theorem: Let a, b, c be integers. The equation

$$
a x+b y=c
$$

has an integer solution if and only if c is divisible by $d:=\operatorname{gcd}(a, b)$. If this is the case, there are infinitely many solutions. If $\left(x_{0}, y_{0}\right)$ is a one particular solution, then the general solution is of the form

$$
x=x_{0}-(b / d) n, \quad y=y_{0}+(a / d) n
$$

as n ranges through all integers.
(4) Proof of the first sentence/finding one particular solution:
(a) Explain why if $a x+b y=c$ has an integer solution $\left(x_{0}, y_{0}\right)$ then c is a multiple of d.
(b) What technique ${ }^{3}$ would you use to find a particular solution of $a x+b y=d$?
(c) Given an integer m how could you find a particular solution for $a x+b y=m d$?
(d) Observe that you have proven the first sentence of the Theorem above.
(a) We can write $a=a^{\prime} d$ and $b=b^{\prime} d$. Then $c=a x_{0}+b y_{0}=a^{\prime} d x_{0}+b^{\prime} d y_{0}=d\left(a^{\prime} x_{0}+b^{\prime} y_{0}\right)$ is a multiple of d.
(b) The Euclidean algorithm!
(c) Take s, t such that $a s+b t=d$. Then $a(m s)+b(m t)=m d$.
(d) OK!
(5) Find all integer solutions (x, y) of the following equations:

- $21 x+56 y=222$.
- $21 x+56 y=224$.
- First we use the Euclidean algorithm to find the GCD of 21 and 56 :

$$
\begin{aligned}
& 56=2 \cdot 21+14 \\
& 21=1 \cdot 14+7 \\
& 14=2 \cdot 7+0
\end{aligned}
$$

it is 7 . Since 222 is not a multiple of 7 there is no solution.

- Now that 224 is a multiple of 7, we know that there is a solution. We find a particular solution by running the Euclidean algorithm backwards.

$$
\begin{aligned}
14 & =1 \cdot 56-2 \cdot 21 \\
7 & =1 \cdot 21-1 \cdot 14=1 \cdot 21-1 \cdot(1 \cdot 56-2 \cdot 21)=-1 \cdot 56+3 \cdot 21
\end{aligned}
$$

Then since $224=32 \cdot 7$, we have

$$
224=32(7)=32(-1 \cdot 56+3 \cdot 21)=-32(56)+96(21)
$$

so $(-32,96)$ is a particular solution. The general solution is then $(-32-8 n, 96+3 n)$ by the formula.
(6) A farmer wishes to buy 100 animals and spend exactly $\$ 200$. Cows are $\$ 20$, sheep are $\$ 6$, and pigs are $\$ 1$. Is this possible? If so, how many ways can he do this?

The system of equations is

$$
c+s+p=100,20 c+6 s+p=200
$$

Substituting $p=100-c-s$ we obtain

$$
\begin{gathered}
20 c+6 s+100-c-s=200 \\
19 c+5 s=100 .
\end{gathered}
$$

As $\operatorname{gcd}(19,5)=1$ this equation will have infinitely many integer solutions. We can find one by the Euclidean Algorithm.

$$
\begin{aligned}
19 & =3 \cdot 5+4 \\
5 & =1 \cdot 4+1 \\
4 & =1 \cdot 19-3 \cdot 5 \\
1 & =1 \cdot 5-1 \cdot 4=1 \cdot 5-1 \cdot(1 \cdot 19-3 \cdot 5)=-1 \cdot 19+4 \cdot 5 .
\end{aligned}
$$

[^1]Then we multiply through:

$$
100=-100 \cdot 19+400 \cdot 5
$$

Hence $c=-100, s=400$ is one integer solution. By the Theorem, all solutions are of the form

$$
c=-100-5 n, s=400+19 n
$$

Since we are looking for nonnegative integer solutions, we see that

$$
-100-5 n \geq 0 \quad \text { and } \quad 400+19 n \geq 0
$$

This yields $-20 \geq n$ and $-21 \leq n$, hence $n=-21$ and $n=-20$ give the only nonnegative solutions. This yields

$$
c=5, s=1, p=94 \quad \text { and } \quad c=0, s=20, p=80 .
$$

(7) Conclusion of the proof of the Theorem: Suppose that c is divisible by $d:=\operatorname{gcd}(a, b)$ and that $\left(x_{0}, y_{0}\right)$ is a particular solution to $a x+b y=c$.
(a) Show that, for any integer $n,\left(x_{0}-(b / d) n, y_{0}+(a / d) n\right)$ is also a solution.
(b) Suppose that $\left(x_{1}, y_{1}\right)$ is another solution. Show that $\left(x_{0}-x_{1}, y_{0}-y_{1}\right)$ is a solution to $a x+b y=0$.
(c) Take the equation $a\left(x_{0}-x_{1}\right)=-b\left(y_{0}-y_{1}\right)$ and divide through by d. Show that a / d divides $y_{0}-y_{1}$ and b / d divides $x_{0}-x_{1}$. Conclude the proof of the Theorem.
(a) Plug in and check.
(b) Plug in and check.
(c) Recall that a / d and b / d are coprime. Since $a / d\left(x_{0}-x_{1}\right)=-b / d\left(y_{0}-y_{1}\right)$, by the lemma, a / d divides $y_{0}-y_{1}$; write $y_{0}-y_{1}=n a / d$. Then $a\left(x_{0}-x_{1}\right)=-b\left(y_{0}-y_{1}\right)=-n a b / d$, so $x_{0}-x_{1}=-n b / d$. Putting things back in place, this gives the formula the statement.
(8) In the next few problems we outline how to solve linear equations

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

in multiple variables over \mathbb{Z}. First we deal with the easy cases.
(a) Show that if $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ does not divide b, then (\dagger) has no solution.
(b) Show that if $a_{1}=1$, then x_{2}, \ldots, x_{n} can be chosen to be any integers, with x_{1} determined uniquely by the other values.
(c) Solve $6 x_{1}+10 x_{2}+12 x_{3}=13$ over \mathbb{Z}.
(d) Solve $x_{1}+7 x_{2}+9 x_{3}=3$ over \mathbb{Z}.
(a) If d is this GCD, then d would divide the LHS but not the RHS.
(b) Take $x_{1}=b-a_{2} x_{2}-\cdots-a_{n} x_{n}$.
(c) No solution: LHS is even, RHS is odd.
(d) $\left(x_{1}, x_{2}, x_{3}\right)=\left(3-7 x_{2}-9 x_{3}, x_{2}, x_{3}\right)$ is the general solution.
(9) Now we discuss how to reduce the general equation to the easy cases. We start with two examples:
(a) Take the equation

$$
5 x_{1}+35 x_{2}+45 x_{3}=15
$$

Divide through to get to a settled case.
(b) Take the equation:

$$
3 x+7 y+8 z+9 w=10 .
$$

We replace x by $u=x+2 y$, so $x=u-2 y$. Rewrite the equation above in terms of u, y, z, w and solve. Then express (x, y, z, w) in terms of the free parameters u, y, z.
(c) Here's how to generalize the last example: if a_{i} is the coefficient with smallest absolute value (say it's positive) and a_{j} is another coefficient that is not a multiple of a_{i}, apply long division to write $a_{j}=q a_{i}+r$ with $0 \leq r<\left|a_{i}\right|$. Replace x_{i} with $x_{i}^{\prime}:=x_{i}+q x_{j}$. Show that the coefficient of x_{j} in the new system is smaller than $\left|a_{i}\right|$.
Repeating this step and dividing all coefficients through by a common factor keeps decreasing the smallest coefficient until it becomes 1, or until it is clear there is no solution.
(d) Solve the equation $4 x+11 y+9 z=35$ over \mathbb{Z}.
(e) Solve the equation $8 x-4 y+10 z-12 w=28$ over \mathbb{Z}.
(f) Challenge your neighbor with a multivariate linear Diophantine equation!
(a)

$$
\begin{gathered}
x_{1}+7 x_{2}+9 x_{3}=3 . \\
\left(x_{1}, x_{2}, x_{3}\right)=\left(3-7 x_{2}-9 x_{3}, x_{2}, x_{3}\right)
\end{gathered}
$$

(b) Take the equation:

$$
\begin{gathered}
3 x+7 y+8 z+9 w=10 \\
3(u-2 y)+7 y+8 z+9 w=10 \quad x=u-2 y \\
3 u+y+8 z+9 w=10 \quad x=u-2 y \\
(u, y, z, w)=(u, 10-3 u-8 z-9 w, z, w) \quad x=u-2 y \\
(x, y, z, w)=(u-2 y, 10-3 u-8 z-9 w, z, w) \\
(x, y, z, w)=(u-2(10-3 u-8 z-9 w), 10-3 u-8 z-9 w, z, w) \\
(x, y, z, w)=(-20+7 u+16 z+18 w, 10-3 u-8 z-9 w, z, w)
\end{gathered}
$$

(c) The coefficient is r, since plugging in we get

$$
a_{i}\left(x_{i}^{\prime}+q x_{j}\right)+a_{j} x_{j}+\cdots=a_{i} x_{i}^{\prime}+\left(a_{j}-q a_{i}\right) x_{j}+\cdots=a_{i} x_{i}^{\prime}+r x_{j}+\cdots
$$

(d) Take $u=x+2 y$, so we get

$$
4 u+3 y+9 z=35
$$

Then take $v=y+u$, so we get

$$
u+3 v+9 z=35
$$

Then v and z are free variables and

$$
u=35-3 v-9 z
$$

so the general solution, at least in terms of u, v, z, is

$$
(u, v, z)=(35-3 v-9 z, v, z)
$$

We need to express y and x in terms of u, v, z (and then v, z) to get the solution. Since $v=y+u$, we have

$$
y=v-u=v-(35-3 v-9 z)=-35+4 v+9 z .
$$

Then, since $u=x+2 y, x=u-2 y$, so

$$
x=(35-3 v-9 z)-2(-35+4 v+9 z)=3(35)-11 v-27 z .
$$

Thus, the general solution is

$$
(x, y, z)=(105-11 v-27 z,-35+4 v+9 z, z), \quad v, z \in \mathbb{Z}
$$

(e),(f): Left for you.

Key Points:

- Computing GCD and GCD as a linear combination by Euclidean Algorithm.
- How to solve linear equations over \mathbb{Z}.

[^0]: ${ }^{1}$ Hint: How are the divisors of a and $|a|$ related?
 ${ }^{2}$ Explain how, but don't write a careful proof for now.

[^1]: ${ }^{3}$ Just name the relevant algorithm for now.

