DEfinition: The greatest common divisor of two integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest integer that divides a and b. Two integers a and b are coprime if $\operatorname{gcd}(a, b)=1$.

The Euclidean algorithm is an algorithm to find the greatest common divisor of two integers $a \geq b \geq 1$. Here is how it works:
(I) Start with $a_{0}:=a, b_{0}:=b$, and $n=0$.
(II) Apply long division / division algorithm to write $a_{n}:=q_{n} b_{n}+r_{n}$ with $0 \leq r_{n}<b_{n}$.
(III) If $r_{n}=0$, STOP; the greatest common divisor of a and b is b_{n}.

Else, set $a_{n+1}:=b_{n}, b_{n+1}:=r_{n}$, and return to Step (II).
It is a THEOREM from Math 310 that the Euclidean algorithm terminates and outputs the correct value.
An expression of the form $r a+s b$ with $r, s \in \mathbb{Z}$ is a linear combination of a and b.
Corollary: If a, b are integers, then $\operatorname{gcd}(a, b)$ can be realized as a linear combination of a and b. Concretely, we can use the Euclidean algorithm to do this.
(1) Warumup with GCDs:
(a) Let a, b be nonzero integers. Explain why ${ }^{1}$ that $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$.
(b) Let a, b be nonzero integers and $d=\operatorname{gcd}(a, b)$. Show that a / d and b / d are coprime.
(c) Given prime factorizations of two positive integers a and b, explain ${ }^{2}$ how to find $\operatorname{gcd}(a, b)$ using the prime factorizations (not the Euclidean algorithm).
(2) The following calculations correspond to running the Euclidean algorithm with 524 and 148:

$$
\begin{array}{rlrl}
524 & =148 \cdot 3+80 & 0 & \leqslant 80<148 \\
148 & =80 \cdot 1+68 & 0 & \leqslant 68<80 \\
80 & =68 \cdot 1+12 & 0 \leqslant 12<68 \\
68 & =12 \cdot 5+8 & 0 \leqslant 8<12 \\
12 & =8 \cdot 1+4 & 0 \leqslant 4<8 \\
8 & =4 \cdot 2+0 &
\end{array}
$$

(a) Identify the numbers a_{n} and b_{n} in the notation of the Euclidean algorithm as stated above.
(b) What is the greatest common divisor of 524 and 148 ?
(3) Continuing this example...
(a) Use equation (i) to express 80 as a linear combination of 524 and 148.
(b) Use equation (ii) to express 68 as a linear combination of 148 and 80 . Use this and the previous part to express 68 as a linear combination of 524 and 148.
(c) Express 12 as a linear combination of 524 and 148.
(d) Express $4=(524,148)$ as a linear combination of 524 and 148.
(4) Use the Euclidean algorithm to find the GCD of 184 and 99, and to express this GCD as a linear combination of 184 and 99.

[^0]We now know everything we need to solve all equations of the form $a x+b y=c$ over the integers! A equation of this form considered over \mathbb{Z} is called a linear Diophantine equation.

ThEOREM: Let a, b, c be integers. The equation

$$
a x+b y=c
$$

has an integer solution if and only if c is divisible by $d:=\operatorname{gcd}(a, b)$. If this is the case, there are infinitely many solutions. If $\left(x_{0}, y_{0}\right)$ is a one particular solution, then the general solution is of the form

$$
x=x_{0}-(b / d) n, \quad y=y_{0}+(a / d) n
$$

as n ranges through all integers.
(4) Proof of the first sentence/finding one particular solution:
(a) Explain why if $a x+b y=c$ has an integer solution $\left(x_{0}, y_{0}\right)$ then c is a multiple of d.
(b) What technique ${ }^{3}$ would you use to find a particular solution of $a x+b y=d$?
(c) Given an integer m how could you find a particular solution for $a x+b y=m d$?
(d) Observe that you have proven the first sentence of the Theorem above.
(5) Find all integer solutions (x, y) of the following equations:

- $21 x+56 y=222$.
- $21 x+56 y=224$.
(6) A farmer wishes to buy 100 animals and spend exactly $\$ 200$. Cows are $\$ 20$, sheep are $\$ 6$, and pigs are $\$ 1$. Is this possible? If so, how many ways can he do this?
(7) Conclusion of the proof of the Theorem: Suppose that c is divisible by $d:=\operatorname{gcd}(a, b)$ and that $\left(x_{0}, y_{0}\right)$ is a particular solution to $a x+b y=c$.
(a) Show that, for any integer $n,\left(x_{0}-(b / d) n, y_{0}+(a / d) n\right)$ is also a solution.
(b) Suppose that $\left(x_{1}, y_{1}\right)$ is another solution. Show that $\left(x_{0}-x_{1}, y_{0}-y_{1}\right)$ is a solution to $a x+b y=0$.
(c) Take the equation $a\left(x_{0}-x_{1}\right)=-b\left(y_{0}-y_{1}\right)$ and divide through by d. Show that a / d divides $y_{0}-y_{1}$ and b / d divides $x_{0}-x_{1}$. Conclude the proof of the Theorem.
(8) In the next few problems we outline how to solve linear equations

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

in multiple variables over \mathbb{Z}. First we deal with the easy cases.
(a) Show that if $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ does not divide b, then (\dagger) has no solution.
(b) Show that if $a_{1}=1$, then x_{2}, \ldots, x_{n} can be chosen to be any integers, with x_{1} determined uniquely by the other values.
(c) Solve $6 x_{1}+10 x_{2}+12 x_{3}=13$ over \mathbb{Z}.
(d) Solve $x_{1}+7 x_{2}+9 x_{3}=3$ over \mathbb{Z}.
(9) Now we discuss how to reduce the general equation to the easy cases. We start with two examples:
(a) Take the equation

$$
5 x_{1}+35 x_{2}+45 x_{3}=15 .
$$

Divide through to get to a settled case.

[^1](b) Take the equation:
$$
3 x+7 y+8 z+9 w=10 .
$$

We replace x by $u=x+2 y$, so $x=u-2 y$. Rewrite the equation above in terms of u, y, z, w and solve. Then express (x, y, z, w) in terms of the free parameters u, y, z.
(c) Here's how to generalize the last example: if a_{i} is the coefficient with smallest absolute value (say it's positive) and a_{j} is another coefficient that is not a multiple of a_{i}, apply long division to write $a_{j}=q a_{i}+r$ with $0 \leq r<\left|a_{i}\right|$. Replace x_{i} with $x_{i}^{\prime}:=x_{i}+q x_{j}$. Show that the coefficient of x_{j} in the new system is smaller than $\left|a_{i}\right|$.
Repeating this step and dividing all coefficients through by a common factor keeps decreasing the smallest coefficient until it becomes 1, or until it is clear there is no solution.
(d) Solve the equation $4 x+11 y+9 z=35$ over \mathbb{Z}.
(e) Solve the equation $8 x-4 y+10 z-12 w=28$ over \mathbb{Z}.
(f) Challenge your neighbor with a multivariate linear Diophantine equation!

Key Points:

- Computing GCD and GCD as a linear combination by Euclidean Algorithm.
- How to solve linear equations over \mathbb{Z}.

[^0]: ${ }^{1}$ Hint: How are the divisors of a and $|a|$ related?
 ${ }^{2}$ Explain how, but don't write a careful proof for now.

[^1]: ${ }^{3}$ Just name the relevant algorithm for now.

