
PYTHAGOREAN TRIPLES

DEFINITION: A triple (a, b, c) of natural numbers is a Pythagoran triple if they form the side lengths
of a right triangle, where c is the length of the hypotenuse.

(3, 4, 5) is a Pythagorean triple.
Our goal today is to find all Pythagoran triples. We will use a couple of tools that whose relevance
might not be clear at first:

FUNDAMENTAL THEOREM OF ARITHMETIC: Every natural number n ≥ 1 can be written as a product
of prime numbers:

n = pe11 pe22 · · · p
ek
k .

This expression is unique up to reordering. �
We call the number ei the multiplicity of the prime pi in the prime factorization of n.

DEFINITION: Let m,n be integers and K ≥ 1 be a natural number. We say that m is congruent to n
modulo K, written as m ≡ n (mod K), if m− n is a multiple of K.

THEOREM: Let n be an integer and K ≥ 1 a natural number. Then n is congruent to exactly one
nonnnegative integer between 0 and K−1: this number is the “remainder” when you divide n by K. �

PROPOSITION: Let m,m′, n, n′ and K be natural numbers. Suppose that

m ≡ m′ (mod K) and n ≡ n′ (mod K).

Then
m+ n ≡ m′ + n′ (mod K) and mn ≡ m′n′ (mod K). �

(1) Without writing too much, use the picture below to deduce the
PYTHAGOREM THOREM: If a, b, c are the side lengths of a right triangle, where c is the length of
the hypotenuse, then a2 + b2 = c2.



We calculate the area of the big square two ways. First, it is a square with side lengths a+ b so
the area is

(a+ b)2 = a2 + 2ab+ b2.

Second, it consists of a square with side length c and four right triangles with base a and height
b, so the area is also

c2 + 4(
1

2
ab) = c2 + 2ab.

Equating the two and subtracting 2ab, we get that a2 + b2 = c2.

(2) Creating Pythagorean triples from others:
(a) Show that if (a, b, c) is a Pythagorean triple and d is a natural number, then (da, db, dc) is a

Pythagorean triple. Deduce that there are infinitely many Pythagorean triples.
(b) Show that if (a, b, c) is a Pythagorean triple and d is a common factor of a, b, and c, then

(a/d, b/d, c/d) is a Pythagorean triple.

For (a), we assume that a2 + b2 = c2 and test whether the new numbers (da, db, dc) satisfy the
equation:

(da)2 + (db)2 = d2a2 + d2b2 = d2(a2 + b2) = d2c2 = (dc)2,

so they do! Part (b) is similar.

DEFINITION: A triple (a, b, c) of natural numbers is a primitive Pythagoran triple (PPT) if
a2 + b2 = c2, and there is no common factor of a, b, c greater than 1; equivalently, a, b, c have no com-
mon prime factor.

Based on (1) and (2), finding all Pythagorean triples boils down to finding all PPTs.

(3) Let a be a natural number. Show that if a is even, then a2 ≡ 0 (mod 4), and if a is odd, then
a2 ≡ 1 (mod 4).

First, suppose that a is even, so we can write a = 2k for some integer k. Then a2 = (2k)2 = 4k2,
and 4k2 − 0 is a multiple of 4, so a2 ≡ 0 (mod 4). Now, suppose that a is odd, so we can write
a = 2k+1 for some integer k. Then a2 = (2k+1)2 = 4k2 +4k+1, and (4k2 +4k+1)− 1 =
4(k2 + k) is a multiple of 4, so a2 ≡ 1 (mod 4).

(4) Suppose that (a, b, c) is a Pythagorean triple. We want to examine the parity (even vs. odd) of the
numbers a, b, c.
(a) Suppose that a and b are both even. Show that c is even too. Deduce that there are no PPTs

with a and b both even.

If a and b are even then a2 ≡ 0 (mod 4) and b2 ≡ 0 (mod 4). To obtain a contradiction,
suppose that c is odd. Then c2 ≡ 1 (mod 4), but since a2 ≡ 0 (mod 4) and b2 ≡ 0
(mod 4), we know that a2+b2 ≡ 0 (mod 4). The same number can’t be equivalent to both
0 and 1 mod 4. This contradicts that a2 + b2 = c2.

(b) Suppose now that a and b are both odd. Consider the equation a2 + b2 = c2 modulo 4, and use
the problem (3) to get a contradiction.



If a and b are odd then a2 ≡ 1 (mod 4) and b2 ≡ 1 (mod 4). Then a2 + b2 ≡ 2 (mod 4).
However, c is either even or odd, so either c2 ≡ 0 (mod 4) or c2 ≡ 1 (mod 4). Either way,
a2 + b2 ≡ c2 is impossible!

(c) Conclude that if (a, b, c) is a PPT, then one of a, b is odd, and the other is even, and that c is
odd.

We know that exactly one of a, b is even and the other odd since we ruled out the possibili-
ties. Then c has to be odd, since a2 + b2 ≡ 0 + 1 ≡ 1 (mod 4).

(5) Let m and n be natural numbers.
(a) Show that n is a perfect square if and only if the multiplicity of each prime in its prime factor-

ization is even.

(⇒): If n is a perfect square, say that n = t2. Take a prime factorization for t:

t = p`11 · · · p
`k
k .

Then
n = t2 = p2`11 · · · p

2`k
k

is a prime factorization of n, and the multiplicities 2`i are all even.
(⇐): Suppose that the multiplicity of every prime in the prime factorization of n is even.
That means we can write

n = p2`11 · · · p
2`k
k

for some primes pi and natural numbers `i. Then

n = (p`11 · · · p
`k
k )2

is a perfect square.

(b) Suppose that m and n have no common prime factors. Show that if mn is a perfect square, then
m and n are both perfect squares.

Take prime factorizations of m and n:

m = pe11 · · · p
ek
k , n = qf11 · · · qfss ;

by our assumption, the p’s and q’s are all different. Then

mn = pe11 · · · p
ek
k qf11 · · · qfss

is a prime factorization of mn. Since mn is a square, each ei and fi is even. But, looking
back and m and n, this implies that m and n are squares.

(6) Consider a PPT (a, b, c). Following (4c), without loss of generality we can assume that a is odd and
b is even. Rewrite the equation a2 + b2 = c2 as a2 = c2 − b2.
(a) By definition, there is no prime factor common to all three of a, b, and c. Show that there is no

prime factor common to just b and c.



Suppose some prime p divides b and c, then it divides b2 and c2, and also c2 − b2, hence it
divides a2. If a prime p divides a2, then it divides a. But we’ve assumed no number divides
all three.

(b) Factor c2− b2 as (c− b)(c+ b). Show that1 there is no prime factor common to c− b and c+ b.

Suppose c−b and c+b have a common prime factor p. Then p divides 2c = (c−b)+(c+b)
and 2b = (c + b) − (c − b). We know that b and c have no common prime factors, so the
only possibility is p = 2. But c+ b is odd, so there are no common prime factors.

(c) Show that c− b and c+ b are perfect squares.

This follows from (5b) and (6b).

(d) Show2 that any PPT can be written in the form

(a, b, c) =

(
st,

s2 − t2

2
,
s2 + t2

2

)
for some odd integers s > t ≥ 1 with no common factors.

By (6c), we can write c + b = s2, c − b = t2 for some integers with no common factors.
These have to be odd because c+ b and c− b are odd, and clearly s > t. Then

c =
(c+ b) + (c− b)

2
=

s2 + t2

2
, b =

(c+ b)− (c− b)

2
=

s2 − t2

2
,

and a =
√

(c+ b)(c− b) =
√
s2t2 = st.

(e) Check the other direction: show that any triple of the form (st, s
2−t2
2

, s
2+t2

2
), where s > t ≥ 1

are odd integers with no common factors, is a PPT.

To check it is a Pythagorean triple, note first that s2 − t2 is always even, so these things
are integers (which was at risk of failing with the division); then just plug into the formula
and chug. To check it is primitive, if a prime p divides s2−t2

2
and s2+t2

2
, it divides s2 and t2,

hence s and t, which we assumed to share no factors.

You have proven the following:

THEOREM: The set of primitive Pythagorean triples (a, b, c) with a odd is given by the formula

a = st, b =
s2 − t2

2
, c =

s2 + t2

2
,

where s > t ≥ 1 are odd integers with no common factors.

These mysterious formulas have a geometric explanation.

1Hint: If there is a (prime) number that divides these, it divides their sum and difference too.
2Hint: Start with writing c+ b = s2, c− b = t2 and solve for a, b, c.



(7) (a) Show that if (a, b, c) is a Pythagorean triple, then
(
a

c
,
b

c

)
is a point on the circle with positive

rational coordinates, and vice versa.
(b) Given a rational number v > 1, the line L through (0, 1) and (v, 0) intersects the unit circle in

two points (one of which is (0, 1)). As a first step towards finding this point, find an equation
for L.

y =
−1
v
x+ 1

(c) Use the equation you found in (7b) and the equation for the unit circle to solve for x and y in
terms of v.

x2 +

(
−1
v
x+ 1

)2

= 1(
1 +

1

v2

)
x2 +

(
−2
v

)
x = 0(

v2 + 1
)
x+ (−2v) = 0

x =
2v

v2 + 1

y =
v2 − 1

v2 + 1

(d) Use (b) to solve for v in terms of x and y and this to show that if x and y are rational, then v is
rational.

y =
−1
v
x+ 1

vy = 1− x

y =
1− x

y

Conclude the following theorem:



THEOREM: The set of points on the unit circle x2 + y2 = 1 with positive rational coordinates is
given by the formula

(x, y) =

(
2v

v2 + 1
,
v2 − 1

v2 + 1

)
where v ranges through rational numbers greater than one.

(e) Take the expressions for x and y from the Theorem above in terms of v, and plug in v = s/t
and simplify each expression for x and y into a single fraction.

(x, y) =

(
2st

s2 + t2
,
s2 − t2

s2 + t2

)

(f) Plug these expressions back into x2 + y2 = 1, clear denominators, and divide through by 4.
What do you notice?

(2st)2 + (s2 − t2)2 = (s2 + t2)2

(st)2 +

(
s2 − t2

2

)2

=

(
s2 + t2

2

)2

This is our formula from before.

(8) Use similar techniques3 to find rational points on:
(a) The circle x2 + y2 = 2.
(b) The hyperbola x2 − y2 = 1.
(c) The hyperbola x2 − 2y2 = 1.
(d) The circle x2 + y2 = 3.

We show (a) and leave the rest for you. The point (1, 1) is on this circle. We will use the
same trick of taking the line between (1, 1) and a point on the x-axis to parametrize solutions.
Following the hint, set x′ = x − 1 and y′ = y − 1. If (v, 0) is a point on the x-axis, let’s even
set v′ = v − 1. Then the line through (1, 1) and (0, v) in (x, y)-coordinates is the line through
(0, 0) and (v′,−1) in (x′, y′)-coordinates, so y′ = −1/v′ · x, and x′ = −v′y′. Then the equation
of the circle is

(x′ + 1)2 + (y′ + 1)2 = 2 x′2 + 2x′ + y′2 + 2y′ = 0

 y′2(v′2 + 1) + 2y′(1− v′) = 0 y′ =
v′ − 1

v′2 + 1
 x′ = −v′ v

′ − 1

v′2 + 1
We need to switch back to (x, y)-coordinates (but it doesn’t really matter whether we switch
back with v or not, so we won’t):

(x, y) =

(
−v′2 + 2v′ + 1

v′2 + 1
,
v′2 + 2v′ − 1

v′2 + 1

)
.

(9) Use this to find integer solutions (a, b, c) to the equations:
(a) The circle a2 + b2 = 2c2.

3Hint: You many have to change your starting point and/or target line. You might find it useful to take new coordinates in
which your starting point is the origin, i.e., x′ = x− a, y′ = y − b if your starting point is (a, b).



(b) The hyperbola a2 − b2 = c2.
(c) The hyperbola a2 − 2b2 = c2.
(d) The circle a2 + b2 = 3c2.

Are these all of the integer solutions?

Plug in s/t and clear denominators. For (a), we get the formula

(a, b, c) = (t2 + 2st− s2, s2 + 2st− t2, s2 + t2).

However, it’s not clear whether this accounts for every integer solution: we might have an
integer solution that only has a multiple of the form above. This happened when we investigated
Pythagorean triples using this method; we have to unexpectedly divide through by 4! I’ll leave
it to you to investigate if anything is missing here.

Key Points:
• Using the Fundamental Theorem of Arithmetic for basic divisibility arguments.
• Definition of congruence, and using congruences to rule out solutions of equations.
• Using geometry to find rational points.


