Definition: A triple (a, b, c) of natural numbers is a Pythagoran triple if they form the side lengths of a right triangle, where c is the length of the hypotenuse.

$(3,4,5)$ is a Pythagorean triple.

Our goal today is to find all Pythagoran triples. We will use a couple of tools that whose relevance might not be clear at first:

Fundamental Theorem of Arithmetic: Every natural number $n \geq 1$ can be written as a product of prime numbers:

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

This expression is unique up to reordering.
We call the number e_{i} the multiplicity of the prime p_{i} in the prime factorization of n.
DEFINITION: Let m, n be integers and $K \geq 1$ be a natural number. We say that m is congruent to n modulo K, written as $m \equiv n(\bmod K)$, if $m-n$ is a multiple of K.

THEOREM: Let n be an integer and $K \geq 1$ a natural number. Then n is congruent to exactly one nonnnegative integer between 0 and $K-1$: this number is the "remainder" when you divide n by K.

PROPOSITION: Let $m, m^{\prime}, n, n^{\prime}$ and K be natural numbers. Suppose that

$$
m \equiv m^{\prime} \quad(\bmod K) \quad \text { and } \quad n \equiv n^{\prime} \quad(\bmod K)
$$

Then

$$
m+n \equiv m^{\prime}+n^{\prime} \quad(\bmod K) \quad \text { and } \quad m n \equiv m^{\prime} n^{\prime} \quad(\bmod K)
$$

(1) Without writing too much, use the picture below to deduce the

Pythagorem Thorem: If a, b, c are the side lengths of a right triangle, where c is the length of the hypotenuse, then $a^{2}+b^{2}=c^{2}$.

We calculate the area of the big square two ways. First, it is a square with side lengths $a+b$ so the area is

$$
(a+b)^{2}=a^{2}+2 a b+b^{2} .
$$

Second, it consists of a square with side length c and four right triangles with base a and height b, so the area is also

$$
c^{2}+4\left(\frac{1}{2} a b\right)=c^{2}+2 a b
$$

Equating the two and subtracting $2 a b$, we get that $a^{2}+b^{2}=c^{2}$.
(2) Creating Pythagorean triples from others:
(a) Show that if (a, b, c) is a Pythagorean triple and d is a natural number, then $(d a, d b, d c)$ is a Pythagorean triple. Deduce that there are infinitely many Pythagorean triples.
(b) Show that if (a, b, c) is a Pythagorean triple and d is a common factor of a, b, and c, then $(a / d, b / d, c / d)$ is a Pythagorean triple.

For (a), we assume that $a^{2}+b^{2}=c^{2}$ and test whether the new numbers $(d a, d b, d c)$ satisfy the equation:

$$
(d a)^{2}+(d b)^{2}=d^{2} a^{2}+d^{2} b^{2}=d^{2}\left(a^{2}+b^{2}\right)=d^{2} c^{2}=(d c)^{2}
$$

so they do! Part (b) is similar.

Definition: A triple (a, b, c) of natural numbers is a primitive Pythagoran triple (PPT) if $a^{2}+b^{2}=c^{2}$, and there is no common factor of a, b, c greater than 1 ; equivalently, a, b, c have no common prime factor.

Based on (1) and (2), finding all Pythagorean triples boils down to finding all PPTs.
(3) Let a be a natural number. Show that if a is even, then $a^{2} \equiv 0(\bmod 4)$, and if a is odd, then $a^{2} \equiv 1(\bmod 4)$.

First, suppose that a is even, so we can write $a=2 k$ for some integer k. Then $a^{2}=(2 k)^{2}=4 k^{2}$, and $4 k^{2}-0$ is a multiple of 4 , so $a^{2} \equiv 0(\bmod 4)$. Now, suppose that a is odd, so we can write $a=2 k+1$ for some integer k. Then $a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$, and $\left(4 k^{2}+4 k+1\right)-1=$ $4\left(k^{2}+k\right)$ is a multiple of 4 , so $a^{2} \equiv 1(\bmod 4)$.
(4) Suppose that (a, b, c) is a Pythagorean triple. We want to examine the parity (even vs. odd) of the numbers a, b, c.
(a) Suppose that a and b are both even. Show that c is even too. Deduce that there are no PPTs with a and b both even.

If a and b are even then $a^{2} \equiv 0(\bmod 4)$ and $b^{2} \equiv 0(\bmod 4)$. To obtain a contradiction, suppose that c is odd. Then $c^{2} \equiv 1(\bmod 4)$, but since $a^{2} \equiv 0(\bmod 4)$ and $b^{2} \equiv 0$ $(\bmod 4)$, we know that $a^{2}+b^{2} \equiv 0(\bmod 4)$. The same number can't be equivalent to both 0 and $1 \bmod 4$. This contradicts that $a^{2}+b^{2}=c^{2}$.
(b) Suppose now that a and b are both odd. Consider the equation $a^{2}+b^{2}=c^{2}$ modulo 4, and use the problem (3) to get a contradiction.

If a and b are odd then $a^{2} \equiv 1(\bmod 4)$ and $b^{2} \equiv 1(\bmod 4)$. Then $a^{2}+b^{2} \equiv 2(\bmod 4)$. However, c is either even or odd, so either $c^{2} \equiv 0(\bmod 4)$ or $c^{2} \equiv 1(\bmod 4)$. Either way, $a^{2}+b^{2} \equiv c^{2}$ is impossible!
(c) Conclude that if (a, b, c) is a PPT, then one of a, b is odd, and the other is even, and that c is odd.

We know that exactly one of a, b is even and the other odd since we ruled out the possibilities. Then c has to be odd, since $a^{2}+b^{2} \equiv 0+1 \equiv 1(\bmod 4)$.
(5) Let m and n be natural numbers.
(a) Show that n is a perfect square if and only if the multiplicity of each prime in its prime factorization is even.
(\Rightarrow) : If n is a perfect square, say that $n=t^{2}$. Take a prime factorization for t :

$$
t=p_{1}^{\ell_{1}} \cdots p_{k}^{\ell_{k}}
$$

Then

$$
n=t^{2}=p_{1}^{2 \ell_{1}} \cdots p_{k}^{2 \ell_{k}}
$$

is a prime factorization of n, and the multiplicities $2 \ell_{i}$ are all even.
(\Leftarrow) : Suppose that the multiplicity of every prime in the prime factorization of n is even. That means we can write

$$
n=p_{1}^{2 \ell_{1}} \cdots p_{k}^{2 \ell_{k}}
$$

for some primes p_{i} and natural numbers ℓ_{i}. Then

$$
n=\left(p_{1}^{\ell_{1}} \cdots p_{k}^{\ell_{k}}\right)^{2}
$$

is a perfect square.
(b) Suppose that m and n have no common prime factors. Show that if $m n$ is a perfect square, then m and n are both perfect squares.

Take prime factorizations of m and n :

$$
m=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}, \quad n=q_{1}^{f_{1}} \cdots q_{s}^{f_{s}} ;
$$

by our assumption, the p 's and q 's are all different. Then

$$
m n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} \cdots q_{s}^{f_{s}}
$$

is a prime factorization of $m n$. Since $m n$ is a square, each e_{i} and f_{i} is even. But, looking back and m and n, this implies that m and n are squares.
(6) Consider a PPT (a, b, c). Following (4c), without loss of generality we can assume that a is odd and b is even. Rewrite the equation $a^{2}+b^{2}=c^{2}$ as $a^{2}=c^{2}-b^{2}$.
(a) By definition, there is no prime factor common to all three of a, b, and c. Show that there is no prime factor common to just b and c.

Suppose some prime p divides b and c, then it divides b^{2} and c^{2}, and also $c^{2}-b^{2}$, hence it divides a^{2}. If a prime p divides a^{2}, then it divides a. But we've assumed no number divides all three.
(b) Factor $c^{2}-b^{2}$ as $(c-b)(c+b)$. Show that ${ }^{1}$ there is no prime factor common to $c-b$ and $c+b$.

Suppose $c-b$ and $c+b$ have a common prime factor p. Then p divides $2 c=(c-b)+(c+b)$ and $2 b=(c+b)-(c-b)$. We know that b and c have no common prime factors, so the only possibility is $p=2$. But $c+b$ is odd, so there are no common prime factors.
(c) Show that $c-b$ and $c+b$ are perfect squares.

This follows from (5b) and (6b).
(d) Show ${ }^{2}$ that any PPT can be written in the form

$$
(a, b, c)=\left(s t, \frac{s^{2}-t^{2}}{2}, \frac{s^{2}+t^{2}}{2}\right)
$$

for some odd integers $s>t \geq 1$ with no common factors.
By (6c), we can write $c+b=s^{2}, c-b=t^{2}$ for some integers with no common factors. These have to be odd because $c+b$ and $c-b$ are odd, and clearly $s>t$. Then

$$
\begin{aligned}
c=\frac{(c+b)+(c-b)}{2} & =\frac{s^{2}+t^{2}}{2}, \quad b=\frac{(c+b)-(c-b)}{2}=\frac{s^{2}-t^{2}}{2} \\
\text { and } \quad a & =\sqrt{(c+b)(c-b)}=\sqrt{s^{2} t^{2}}=s t
\end{aligned}
$$

(e) Check the other direction: show that any triple of the form $\left(s t, \frac{s^{2}-t^{2}}{2}, \frac{s^{2}+t^{2}}{2}\right)$, where $s>t \geq 1$ are odd integers with no common factors, is a PPT.

To check it is a Pythagorean triple, note first that $s^{2}-t^{2}$ is always even, so these things are integers (which was at risk of failing with the division); then just plug into the formula and chug. To check it is primitive, if a prime p divides $\frac{s^{2}-t^{2}}{2}$ and $\frac{s^{2}+t^{2}}{2}$, it divides s^{2} and t^{2}, hence s and t, which we assumed to share no factors.

You have proven the following:
Theorem: The set of primitive Pythagorean triples (a, b, c) with a odd is given by the formula

$$
a=s t, \quad b=\frac{s^{2}-t^{2}}{2}, \quad c=\frac{s^{2}+t^{2}}{2}
$$

where $s>t \geq 1$ are odd integers with no common factors.

These mysterious formulas have a geometric explanation.

[^0]
(7) (a) Show that if (a, b, c) is a Pythagorean triple, then $\left(\frac{a}{c}, \frac{b}{c}\right)$ is a point on the circle with positive rational coordinates, and vice versa.
(b) Given a rational number $v>1$, the line L through $(0,1)$ and $(v, 0)$ intersects the unit circle in two points (one of which is $(0,1)$). As a first step towards finding this point, find an equation for L.
$$
y=\frac{-1}{v} x+1
$$
(c) Use the equation you found in (7b) and the equation for the unit circle to solve for x and y in terms of v.
\[

$$
\begin{gathered}
x^{2}+\left(\frac{-1}{v} x+1\right)^{2}=1 \\
\left(1+\frac{1}{v^{2}}\right) x^{2}+\left(\frac{-2}{v}\right) x=0 \\
\left(v^{2}+1\right) x+(-2 v)=0 \\
x=\frac{2 v}{v^{2}+1} \\
y=\frac{v^{2}-1}{v^{2}+1}
\end{gathered}
$$
\]

(d) Use (b) to solve for v in terms of x and y and this to show that if x and y are rational, then v is rational.

$$
\begin{gathered}
y=\frac{-1}{v} x+1 \\
v y=1-x \\
y=\frac{1-x}{y}
\end{gathered}
$$

Conclude the following theorem:

ThEOREM: The set of points on the unit circle $x^{2}+y^{2}=1$ with positive rational coordinates is given by the formula

$$
(x, y)=\left(\frac{2 v}{v^{2}+1}, \frac{v^{2}-1}{v^{2}+1}\right)
$$

where v ranges through rational numbers greater than one.
(e) Take the expressions for x and y from the Theorem above in terms of v, and plug in $v=s / t$ and simplify each expression for x and y into a single fraction.

$$
(x, y)=\left(\frac{2 s t}{s^{2}+t^{2}}, \frac{s^{2}-t^{2}}{s^{2}+t^{2}}\right)
$$

(f) Plug these expressions back into $x^{2}+y^{2}=1$, clear denominators, and divide through by 4 . What do you notice?

$$
\begin{aligned}
(2 s t)^{2}+\left(s^{2}-t^{2}\right)^{2} & =\left(s^{2}+t^{2}\right)^{2} \\
(s t)^{2}+\left(\frac{s^{2}-t^{2}}{2}\right)^{2} & =\left(\frac{s^{2}+t^{2}}{2}\right)^{2}
\end{aligned}
$$

This is our formula from before.
(8) Use similar techniques ${ }^{3}$ to find rational points on:
(a) The circle $x^{2}+y^{2}=2$.
(b) The hyperbola $x^{2}-y^{2}=1$.
(c) The hyperbola $x^{2}-2 y^{2}=1$.
(d) The circle $x^{2}+y^{2}=3$.

We show (a) and leave the rest for you. The point $(1,1)$ is on this circle. We will use the same trick of taking the line between $(1,1)$ and a point on the x-axis to parametrize solutions. Following the hint, set $x^{\prime}=x-1$ and $y^{\prime}=y-1$. If $(v, 0)$ is a point on the x-axis, let's even set $v^{\prime}=v-1$. Then the line through $(1,1)$ and $(0, v)$ in (x, y)-coordinates is the line through $(0,0)$ and $\left(v^{\prime},-1\right)$ in $\left(x^{\prime}, y^{\prime}\right)$-coordinates, so $y^{\prime}=-1 / v^{\prime} \cdot x$, and $x^{\prime}=-v^{\prime} y^{\prime}$. Then the equation of the circle is

$$
\begin{aligned}
\left(x^{\prime}+1\right)^{2}+\left(y^{\prime}+1\right)^{2} & =2 \rightsquigarrow x^{\prime 2}+2 x^{\prime}+y^{\prime 2}+2 y^{\prime}=0 \\
\rightsquigarrow y^{\prime 2}\left(v^{\prime 2}+1\right)+2 y^{\prime}\left(1-v^{\prime}\right) & =0 \rightsquigarrow y^{\prime}=\frac{v^{\prime}-1}{v^{\prime 2}+1} \rightsquigarrow x^{\prime}=-v^{\prime} \frac{v^{\prime}-1}{v^{\prime 2}+1}
\end{aligned}
$$

We need to switch back to (x, y)-coordinates (but it doesn't really matter whether we switch back with v or not, so we won't):

$$
(x, y)=\left(\frac{-v^{\prime 2}+2 v^{\prime}+1}{v^{\prime 2}+1}, \frac{v^{\prime 2}+2 v^{\prime}-1}{v^{\prime 2}+1}\right) .
$$

(9) Use this to find integer solutions (a, b, c) to the equations:
(a) The circle $a^{2}+b^{2}=2 c^{2}$.

[^1](b) The hyperbola $a^{2}-b^{2}=c^{2}$.
(c) The hyperbola $a^{2}-2 b^{2}=c^{2}$.
(d) The circle $a^{2}+b^{2}=3 c^{2}$.

Are these all of the integer solutions?
Plug in s / t and clear denominators. For (a), we get the formula

$$
(a, b, c)=\left(t^{2}+2 s t-s^{2}, s^{2}+2 s t-t^{2}, s^{2}+t^{2}\right) .
$$

However, it's not clear whether this accounts for every integer solution: we might have an integer solution that only has a multiple of the form above. This happened when we investigated Pythagorean triples using this method; we have to unexpectedly divide through by 4! I'll leave it to you to investigate if anything is missing here.

Key Points:

- Using the Fundamental Theorem of Arithmetic for basic divisibility arguments.
- Definition of congruence, and using congruences to rule out solutions of equations.
- Using geometry to find rational points.

[^0]: ${ }^{1}$ Hint: If there is a (prime) number that divides these, it divides their sum and difference too.
 ${ }^{2}$ Hint: Start with writing $c+b=s^{2}, c-b=t^{2}$ and solve for a, b, c.

[^1]: ${ }^{3}$ Hint: You many have to change your starting point and/or target line. You might find it useful to take new coordinates in which your starting point is the origin, i.e., $x^{\prime}=x-a, y^{\prime}=y-b$ if your starting point is (a, b).

