PYTHAGOREAN TRIPLES

DEFINITION: A triple (a, b, ¢) of natural numbers is a Pythagoran triple if they form the side lengths
of a right triangle, where c is the length of the hypotenuse.

(3,4,5) is a Pythagorean triple.
Our goal today is to find all Pythagoran triples. We will use a couple of tools that whose relevance
might not be clear at first:

FUNDAMENTAL THEOREM OF ARITHMETIC: Every natural number n > 1 can be written as a product
of prime numbers:

n = p?p;z .. ,ka_
This expression is unique up to reordering. U
We call the number e; the multiplicity of the prime p; in the prime factorization of n.

DEFINITION: Let m,n be integers and K > 1 be a natural number. We say that m is congruent to n
modulo K, written as m = n (mod K), if m — n is a multiple of K.

THEOREM: Let n be an integer and KX > 1 a natural number. Then n is congruent to exactly one
nonnnegative integer between 0 and K —1: this number is the “remainder” when you divide n by K. [J

PROPOSITION: Let m,m’, n,n’ and K be natural numbers. Suppose that
m=m' (mod K) and n=n' (mod K).

Then
m+n=m'+n" (mod K) and mn=m'n" (mod K). O

(1) Without writing too much, use the picture below to deduce the
PYTHAGOREM THOREM: If a, b, c are the side lengths of a right triangle, where c is the length of
the hypotenuse, then a? + b* = 2.

b a

Cc




We calculate the area of the big square two ways. First, it is a square with side lengths a + b so
the area is

(a+0b)* = a® + 2ab + b*.
Second, it consists of a square with side length ¢ and four right triangles with base a and height
b, so the area is also

1
&+ 4(§ab) = ¢ + 2ab.

Equating the two and subtracting 2ab, we get that a? + b*> = 2.

(2) Creating Pythagorean triples from others:
(a) Show that if (a,b,c) is a Pythagorean triple and d is a natural number, then (da, db,dc) is a
Pythagorean triple. Deduce that there are infinitely many Pythagorean triples.
(b) Show that if (a, b, c) is a Pythagorean triple and d is a common factor of a, b, and ¢, then
(a/d,b/d,c/d) is a Pythagorean triple.

For (a), we assume that a® + b* = ¢? and test whether the new numbers (da, db, dc) satisfy the
equation:

(da)? + (db)? = d*a® + d°b* = d*(a* + b*) = d*c* = (dc)?,
so they do! Part (b) is similar.

DEFINITION: A triple (a,b,c) of natural numbers is a primitive Pythagoran triple (PPT) if
a? 4+ b? = ¢2, and there is no common factor of a, b, ¢ greater than 1; equivalently, a, b, ¢ have no com-
mon prime factor.

Based on (1) and (2), finding all Pythagorean triples boils down to finding all PPTs.

(3) Let a be a natural number. Show that if « is even, then a®> = 0 (mod 4), and if @ is odd, then
a’?=1 (mod 4).

First, suppose that a is even, so we can write a = 2k for some integer k. Then a? = (21{;)2 = 4k,
and 4k*> — O is a multiple of 4, so a? =0 (mod 4). Now, suppose that a is odd, so we can write
a = 2k + 1 for some integer k. Then a® = (2k +1)*> = 4k* + 4k + 1, and (4k* + 4k +1) —1 =
4(k* + k) is a multiple of 4, so a®* = 1 (mod 4).

(4) Suppose that (a, b, c) is a Pythagorean triple. We want to examine the parity (even vs. odd) of the
numbers a, b, c.
(a) Suppose that a and b are both even. Show that c is even too. Deduce that there are no PPTs
with a and b both even.

If @ and b are even then a®> = 0 (mod 4) and b*> = 0 (mod 4). To obtain a contradiction,
suppose that ¢ is odd. Then ¢ = 1 (mod 4), but since a* = 0 (mod 4) and b* = 0
(mod 4), we know that a®+* = 0 (mod 4). The same number can’t be equivalent to both
0 and 1 mod 4. This contradicts that a® + b* = 2.

(b) Suppose now that a and b are both odd. Consider the equation a® + b* = ¢ modulo 4, and use
the problem (3) to get a contradiction.



If @ and b are odd then a®> = 1 (mod 4) and b*> = 1 (mod 4). Then a® + b? = 2 (mod 4).
However, c is either even or odd, so either ¢ = 0 (mod 4) or ¢®> = 1 (mod 4). Either way,
a®? 4+ b? = ¢? is impossible!

(c) Conclude that if (a, b, ) is a PPT, then one of a, b is odd, and the other is even, and that c is
odd.

We know that exactly one of a, b is even and the other odd since we ruled out the possibili-
ties. Then c has to be odd, since a* +b* =0+ 1 =1 (mod 4).

(5) Let m and n be natural numbers.
(a) Show that n is a perfect square if and only if the multiplicity of each prime in its prime factor-

ization is even.

(=): If n is a perfect square, say that n = 2. Take a prime factorization for ¢:
t=pip
Then
N — 2 :pf& N 'ngk
is a prime factorization of n, and the multiplicities 2¢; are all even.
(<=): Suppose that the multiplicity of every prime in the prime factorization of n is even.
That means we can write
n=pi"pit
for some primes p; and natural numbers ¢;. Then

¢
n= " pF)?

is a perfect square.

(b) Suppose that m and n have no common prime factors. Show that if mn is a perfect square, then
m and n are both perfect squares.

Take prime factorizations of m and n:
m:pil...pzk7 n:q{lqé[s’

by our assumption, the p’s and ¢’s are all different. Then

er fi

mn:pil...pk ql qsf5
is a prime factorization of mn. Since mn is a square, each ¢; and f; is even. But, looking
back and m and n, this implies that m and n are squares.

(6) Consider a PPT (a, b, ). Following (4c), without loss of generality we can assume that a is odd and
b is even. Rewrite the equation a? + b = ¢? as a® = ¢ — b2
(a) By definition, there is no prime factor common to all three of a, b, and c. Show that there is no

prime factor common to just b and c.



Suppose some prime p divides b and ¢, then it divides b* and ¢?, and also ¢ — b?, hence it

divides a?. If a prime p divides a?, then it divides a. But we’ve assumed no number divides
all three.

(b) Factor ¢? — b? as (c — b)(c + b). Show that' there is no prime factor common to ¢ — b and ¢ + b.

Suppose ¢—b and ¢+ b have a common prime factor p. Then p divides 2¢ = (¢—b)+ (c+b)
and 2b = (¢ + b) — (¢ — b). We know that b and ¢ have no common prime factors, so the
only possibility is p = 2. But ¢ 4 b is odd, so there are no common prime factors.

(c) Show that ¢ — b and ¢ + b are perfect squares.

This follows from (5b) and (6b).

(d) Show? that any PPT can be written in the form

s — 12 %4 ¢?
b,c) = | st
R

for some odd integers s > ¢ > 1 with no common factors.

By (6¢), we can write ¢ + b = s2, ¢ — b = t? for some integers with no common factors.

These have to be odd because ¢ + b and ¢ — b are odd, and clearly s > ¢. Then
(c+b)+(c—0b) s*+¢? ; (c+b)—(c—0b) s*—+¢
C = = = =
2 2 2 2

and a=/(c+0b)(c—b)=Vs22 = st

(e) Check the other direction: show that any triple of the form (st, 32;2, SQJZFF ), where s >t > 1
are odd integers with no common factors, is a PPT.

To check it is a Pythagorean triple, note first that s> — ¢2 is always even, so these things
are integers (which was at risk of failing with the division); then just plug into the formula
and chug. To check it is primitive, if a prime p divides 52;t2 and 52‘2H2 , it divides s? and #2,
hence s and ¢, which we assumed to share no factors.

You have proven the following:

THEOREM: The set of primitive Pythagorean triples (a, b, ¢) with a odd is given by the formula

s2 —t2 52 4+ 12
a=st, b= 5 c= 5
where s >t > 1 are odd integers with no common factors.

These mysterious formulas have a geometric explanation.

"Hint: If there is a (prime) number that divides these, it divides their sum and difference too.
’Hint: Start with writing ¢ + b = s2, ¢ — b = ¢2 and solve for a, b, c.



D1
b

(7) (a) Show that if (a, b, ¢) is a Pythagorean triple, then (g, —) is a point on the circle with positive
cc

rational coordinates, and vice versa.
(b) Given a rational number v > 1, the line L through (0, 1) and (v, 0) intersects the unit circle in
two points (one of which is (0, 1)). As a first step towards finding this point, find an equation

for L.

—1
y=—x+1
v

(c) Use the equation you found in (7b) and the equation for the unit circle to solve for x and y in
terms of v.

(V*+1)z+ (—20) =0

v
x_zﬂ—i—l

-1
y_v2+1

(d) Use (b) to solve for v in terms of x and y and this to show that if x and y are rational, then v is

rational.
y:_—:c—l—l
v
vy=1—=x
11—
y:
Y

Conclude the following theorem:




THEOREM: The set of points on the unit circle 2 + y? = 1 with positive rational coordinates is

given by the formula
(z,7) 20 v?-1
z,Y)=|———, 55—
Y v24+170v2+1

where v ranges through rational numbers greater than one.

(e) Take the expressions for « and y from the Theorem above in terms of v, and plug in v = s/t
and simplify each expression for x and y into a single fraction.

(z.1) 25t s% —t?
T =
Y 82+t2782+t2

(f) Plug these expressions back into 22 4+ y? = 1, clear denominators, and divide through by 4.
What do you notice?

(25t)? 4 (8% — t7)? = (s* + 1?)?

o (557 - (359

This is our formula from before.

(8) Use similar techniques3 to find rational points on:
(a) The circle 22 + y> = 2.
(b) The hyperbola 22 — y? = 1.
(c) The hyperbola 22 — 2% = 1.
(d) The circle 2% + y* = 3.

We show (a) and leave the rest for you. The point (1, 1) is on this circle. We will use the
same trick of taking the line between (1, 1) and a point on the z-axis to parametrize solutions.
Following the hint, set 2/ = 2z — 1 and ¢/ = y — 1. If (v,0) is a point on the z-axis, let’s even
set v/ = v — 1. Then the line through (1, 1) and (0, v) in (x, y)-coordinates is the line through
(0,0) and (v', —1) in (2, 3/)-coordinates, so y' = —1/v" - z, and 2’ = —v'y’. Then the equation
of the circle is

($/+1)2+(y/+1)2:wa/2+2$/+y/2+2y/:0

/ /
v —1 , , U —1

—— = =0

v2 41 v2 41

We need to switch back to (x,y)-coordinates (but it doesn’t really matter whether we switch
back with v or not, so we won’t):

—2 41 v+ =1
(:Evy> = 1> ) 2 ’
v+ 1 v +1

=y 1) + 2 (1) =0y =

(9) Use this to find integer solutions (a, b, ¢) to the equations:
(a) The circle a® + b? = 2¢2.

Hint: You many have to change your starting point and/or target line. You might find it useful to take new coordinates in
which your starting point is the origin, i.e., 2’ = z — a, y’ = y — b if your starting point is (a, b).




(b) The hyperbola a? — b* = 2.

(c) The hyperbola a? — 2b%> = 2.
(d) The circle a® + b? = 3c2.
Are these all of the integer solutions?

Plug in s/t and clear denominators. For (a), we get the formula
(a,b,c) = (t* + 2st — 52, 8% + 25t — 12, 5% + 7).

However, it’s not clear whether this accounts for every integer solution: we might have an
integer solution that only has a multiple of the form above. This happened when we investigated
Pythagorean triples using this method; we have to unexpectedly divide through by 4! I’ll leave
it to you to investigate if anything is missing here.

Key Points:

e Using the Fundamental Theorem of Arithmetic for basic divisibility arguments.
e Definition of congruence, and using congruences to rule out solutions of equations.
e Using geometry to find rational points.




