ElLIPTIC CURVES OVER FINITE FIELDS

DEFINITION: Let $p \geq 5$ be a prime. An elliptic curve over \mathbb{Z}_{p} is the solution set E_{p} in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ to an equation of the form $y^{2}=x^{3}+[a] x+[b]$ for real constants $[a],[b] \in \mathbb{Z}_{p}$ that satisfy the technical assumption that $[4][a]^{3}+[27][b]^{2} \neq 0$. For an elliptic curve E_{p} we define $\bar{E}_{p}=E_{p} \cup\{\infty\}$, where ∞ is a formal symbol.

THEOREM: There is a group structure on \bar{E}_{p} with operation \star, identity element ∞, and inverse $-\vee$ given by the same geometric rules as in the real case.
(1) Consider the elliptic curve $\bar{E}_{5}: y^{2}=x^{3}-[1]$ over \mathbb{Z}_{5}.
(a) Use trial and error to compute all of the points in \bar{E}_{5}.
(b) Without any computation, explain why each element of E_{5} (not including ∞) has order 2,3 or 6 .
(c) For $P=([3],[1])$, compute $2 P$ and $3 P$.
(d) Without any further computation of \star with lines and whatnot, determine the order of each point in \bar{E}_{5}.
(a) $\bar{E}_{5}=\{(0,2),(0,3),(1,0),(3,1),(3,4), \infty\}$.
(b) \bar{E}_{5} is a group with 6 elements. By Lagrange's Theorem, the order of an element divides the order of the group.
(c) To compute $2 P$, we find the tangent line through P. By implicit differentiation, we get $[2] y \frac{d y}{d x}=[3] x^{2}$, so the slope of the tangent line at P is $\frac{[3] \cdot[3]^{2}}{[22 \cdot[1]}=\frac{[27]}{[2]}=\frac{[2]}{[2]}=[1]$. The tangent line is then $y=x+[3]$. Plugging this into the original equation and solving (or just testing the other points in E) we get that the other point of intersection is $([0],[3])$, so $2 P=([0],[-3])=([0],[2])$. To compute $3 P$, we take the line between P and $2 P$. The slope is $\frac{[1]-[2]}{[3]-[0]}=\frac{[4]}{[3]}=[4][2]=[3]$, so the line is $y=[3] x+[2]$. The third point of intersection (by substitution or trial and error) is $([1],[0])$, which is its own inverse, so $3 P=([1],[0])$.
(d) Since we ruled out 2 and 3 , we know that P has order exactly 6 . Then $3(2 P)=\infty$ but $2(2 P) \neq \infty$, so $2 P$ has order 3 , and $3 P$ has order 2 . The remaining points are $([0],[3])=(2 P)^{\vee}=4 P$ which has order 3 and $([3],[4])=P^{\vee}=5 P$ which has order 6.
(2) Consider the elliptic curve $\bar{E}_{5}: y^{2}=x^{3}-x+[1]$ over \mathbb{Z}_{5}.
(a) Use trial and error to compute all of the points in \bar{E}_{5}.
(b) Explain why there are no points in E_{5} (not including ∞) with odd order.
(c) Explain why every point $P \in \bar{E}_{5}$ has $8 P=\infty$.
(a) $\bar{E}_{5}=\{(0,1),(0,4),(1,1),(1,4),(3,0),(4,1),(4,4), \infty\}$.
(b) The order of \bar{E}_{5} is 8 , so by Lagrange, every element has order dividing 8 , which implies even (whenever the order isn't 1).
(c) If the order of P is d and $d \mid 8$, write $8=d e$; then $8 P=d e P=e(d P)=e \infty=\infty$.

