DEFINITION: Let $p \ge 5$ be a prime. An **elliptic curve** over \mathbb{Z}_p is the solution set E_p in $\mathbb{Z}_p \times \mathbb{Z}_p$ to an equation of the form $y^2 = x^3 + [a]x + [b]$ for real constants $[a], [b] \in \mathbb{Z}_p$ that satisfy the technical assumption that $[4][a]^3 + [27][b]^2 \neq 0$. For an elliptic curve E_p we define $\overline{E}_p = E_p \cup \{\infty\}$, where ∞ is a formal symbol.

THEOREM: There is a group structure on \overline{E}_p with operation \star , identity element ∞ , and inverse $-^{\vee}$ given by the same geometric rules as in the real case.

- (1) Consider the elliptic curve $\overline{E}_5: y^2 = x^3 [1]$ over \mathbb{Z}_5 .
 - (a) Use trial and error to compute all of the points in \overline{E}_5 .
 - (b) Without any computation, explain why each element of E_5 (not including ∞) has order 2, 3, or 6.
 - (c) For P = ([3], [1]), compute 2P and 3P.
 - (d) Without any further computation of \star with lines and whatnot, determine the order of each point in \overline{E}_5 .
 - (a) $\overline{E}_5 = \{(0,2), (0,3), (1,0), (3,1), (3,4), \infty\}.$
 - (b) \overline{E}_5 is a group with 6 elements. By Lagrange's Theorem, the order of an element divides the order of the group.
 - (c) To compute 2P, we find the tangent line through P. By implicit differentiation, we get $[2]y\frac{dy}{dx} = [3]x^2$, so the slope of the tangent line at P is $\frac{[3]\cdot[3]^2}{[2]\cdot[1]} = \frac{[27]}{[2]} = \frac{[2]}{[2]} = [1]$. The tangent line is then y = x + [3]. Plugging this into the original equation and solving (or just testing the other points in E) we get that the other point of intersection is ([0], [3]), so 2P = ([0], [-3]) = ([0], [2]). To compute 3P, we take the line between P and 2P. The slope is $\frac{[1]-[2]}{[3]-[0]} = \frac{[4]}{[3]} = [4][2] = [3]$, so the line is y = [3]x + [2]. The third point of intersection (by substitution or trial and error) is ([1], [0]), which is its own inverse, so 3P = ([1], [0]).
 - (d) Since we ruled out 2 and 3, we know that P has order exactly 6. Then 3(2P) = ∞ but 2(2P) ≠ ∞, so 2P has order 3, and 3P has order 2. The remaining points are ([0], [3]) = (2P)[∨] = 4P which has order 3 and ([3], [4]) = P[∨] = 5P which has order 6.
- (2) Consider the elliptic curve $\overline{E}_5 : y^2 = x^3 x + [1]$ over \mathbb{Z}_5 .
 - (a) Use trial and error to compute all of the points in \overline{E}_5 .
 - (b) Explain why there are no points in E_5 (not including ∞) with odd order.
 - (c) Explain why every point $P \in \overline{E}_5$ has $8P = \infty$.
 - (a) $\overline{E}_5 = \{(0,1), (0,4), (1,1), (1,4), (3,0), (4,1), (4,4), \infty\}.$
 - (b) The order of E_5 is 8, so by Lagrange, every element has order dividing 8, which implies even (whenever the order isn't 1).
 - (c) If the order of P is d and d|8, write 8 = de; then $8P = deP = e(dP) = e\infty = \infty$.