DEFINITION: Let $p \ge 5$ be a prime. An **elliptic curve** over \mathbb{Z}_p is the solution set E_p in $\mathbb{Z}_p \times \mathbb{Z}_p$ to an equation of the form $y^2 = x^3 + [a]x + [b]$ for real constants $[a], [b] \in \mathbb{Z}_p$ that satisfy the technical assumption that $[4][a]^3 + [27][b]^2 \neq 0$. For an elliptic curve E_p we define $\overline{E}_p = E_p \cup \{\infty\}$, where ∞ is a formal symbol.

THEOREM: There is a group structure on \overline{E}_p with operation \star , identity element ∞ , and inverse $-^{\vee}$ given by the same geometric rules as in the real case.

- (1) Consider the elliptic curve $\overline{E}_5: y^2 = x^3 [1]$ over \mathbb{Z}_5 .
 - (a) Use trial and error to compute all of the points in \overline{E}_5 .
 - (b) Without any computation, explain why each element of E_5 (not including ∞) has order 2, 3, or 6.
 - (c) For P = ([3], [1]), compute 2P and 3P.
 - (d) Without any further computation of \star with lines and whatnot, determine the order of each point in \overline{E}_5 .
- (2) Consider the elliptic curve $\overline{E}_5: y^2 = x^3 x + [1]$ over \mathbb{Z}_5 .
 - (a) Use trial and error to compute all of the points in \overline{E}_5 .
 - (b) Explain why there are no points in E_5 (not including ∞) with odd order.
 - (c) Explain why every point $P \in \overline{E}_5$ has $8P = \infty$.