From last time:

DEFINITION: A (real) **elliptic curve** is the solution set E in \mathbb{R}^2 to an equation of the form $y^2 = x^3 + ax + b$ for real constants $a, b \in \mathbb{R}$ that satisfy the technical assumption that $4a^3 + 27b^2 \neq 0$. For an elliptic curve E we define $\overline{E} = E \cup \{\infty\}$, where ∞ is a formal symbol.

Intuitively, we think of ∞ as a point infinitely far up or down in the y-direction.

DEFINITION (OPERATION ON AN ELLIPTIC CURVE): For an elliptic curve E, and points $P, Q \in E$ with $P \neq Q$, we set:

 $P^{\vee} :=$ the reflection of P over the x-axis

 $P \star Q := R^{\vee}$, where R is the third point of intersection of the line between P and Q and E

 $P \star P := S^{\vee}$, where S is the other point of intersection of the tangent line to E at P and E.

THEOREM: There is a group structure on \overline{E} with operation \star , identity element ∞ , and inverse $-^{\vee}$.

- (1) Points of low order¹. Let $\overline{E} = E \cup \{\infty\}$ be a real elliptic curve the group law above.
 - (a) How can you identify the points of order 2 on \overline{E} geometrically? Mark them on each of your placemats. Note: They may not be labelled points.
 - (b) How can you identify the points of order 4 on \overline{E} geometrically? Mark them on each of your placemats. Note: They may not be labelled points.
 - (c) Points of order 3 on \overline{E} correspond to a special particular case of the group operation \star that we haven't discussed yet: if $3P = \infty$ if and only if P is an inflection point. Discuss whether this rule is "morally consistent" with the rules above or if it is "totally out of left field".
 - (d) Mark the points of order 3 on each of your placemats. Note: They may not be labelled points.
 - (e) How can you identify the points of order 6 on \overline{E} geometrically? Mark them on each of your placemats. Note: They may not be labelled points.

(a) Points on the *x*-axis.

- (b) Points whose tangent line meets a point in E on the x-axis.
- (c) An inflection point corresponds to a triple intersection with the tangent line, so morally, the third point on the line between P and P is P, so $P \star P = P^{\vee}$, and then $P \star P \star P = P^{\vee} \star P = \infty$.

(d) OK

(e) Points whose tangent line meets an inflection point in E.

THEOREM: If E is a real elliptic curve given by the equation $y^2 = x^3 + ax + b$ for rational numbers $a, b \in \mathbb{Q}$, then the set of rational points on E (along with the infinity point " ∞ ") form a group with operation \star , identity element ∞ , and inverse $-^{\vee}$. We denote this group by $E_{\mathbb{Q}}$.

¹Recall: The order of an element g in a group G with identity 1 is the smallest integer n such that $g^n = 1$, if such an n exists, and infinite otherwise.

(2) Explain how² the theorem about the group structure on $\overline{E}_{\mathbb{Q}}$ above follows from the theorem about the group structure on \overline{E} (real elliptic curves).

The line between two rational points has a rational slope and rational intersection. Plugging this into the equation for E gives a rational degree three polynomial in x. Two of the roots we already know (from the two points, or a double root in the case of a tangent line) and are rational; then by long division, the third root is rational. Thus the x-coordinate is rational, and the y-coordinate is rational too; still rational after reflecting.

(3) The equation $y^2 = x^3 + 17$ has a rational solution (-2, 3). Use this solution and the group structure on $\overline{E}_{\mathbb{Q}}$ to come up with at least five more rational solutions.

We have $P^{\vee} = (-2, -3)$ as well. We also get $2P = (8, -23), 2P^{\vee} = (8, 23)$, etc.

(4) The equation $y^2 = x^3 + 1$ has at least five easy rational solutions: P = (-1, 0), Q = (0, 1), $Q^{\vee} = (0, -1)$, R = (2, 3), $R^{\vee} = (2, -3)$. Use the group structure on $\overline{E}_{\mathbb{Q}}$ to try to come up with more rational solutions.

We find that $P \star P = \infty$, $P \star Q = R^{\vee}$, $P \star R = Q^{\vee}$, $Q \star Q = Q^{\vee}$ (since Q is an inflection point), $Q \star R = P$, and $R \star R = Q$. Similar things happen with Q^{\vee} and R^{\vee} . The upshot is that these five points plus ∞ form a finite subgroup of $\overline{E}_{\mathbb{Q}}$ so there are not more solutions that can be generated from these.

DEFINITION: Let $p \ge 5$ be a prime. An **elliptic curve** over \mathbb{Z}_p is the solution set E_p in $\mathbb{Z}_p \times \mathbb{Z}_p$ to an equation of the form $y^2 = x^3 + [a]x + [b]$ for real constants $[a], [b] \in \mathbb{Z}_p$ that satisfy the technical assumption that $[4][a]^3 + [27][b]^2 \ne 0$. For an elliptic curve E_p we define $\overline{E}_p = E_p \cup \{\infty\}$, where ∞ is a formal symbol.

THEOREM: There is a group structure on \overline{E}_p with operation \star , identity element ∞ , and inverse $-^{\vee}$ given by the same geometric rules as in the real case.

- (5) The elliptic curve $\overline{E}_5: y^2 = x^3 x + [1].$
 - (a) Use trial and error to compute all of the points in \overline{E}_5 .
 - (b) For P = (0, 1) and Q = (1, 1), compute $P \star Q$ and 2P.
- (6) In this problem, we will prove that the elliptic curve $E: y^2 = x^3 + 7$ has no integer solutions.
 - (a) Suppose that (a, b) is an integer solution. Show that a must be odd.
 - (b) Show that $b^2 + 1 = (a+2)((a-1)^2 + 3)$.
 - (c) Show that there exists a prime $q \equiv 3 \pmod{4}$ that divides the integer in (b), and obtain a contradiction.

²Hint: How do you compute $P \star Q$ algebraically?

- (7) Let $a, b \in \mathbb{R}$ be real numbers. Show that every solution point P = (x, y) of the equation $y^2 = x^3 + ax + b$ has a well-defined tangent line (i.e., implicit differentiation yields a well-defined real or infinite "value" of $\frac{dy}{dx}$ at every point) if and only if $4a^3 + 27b^2 \neq 0$.
- (8) Use geometric and calculus considerations to give upper bounds on the number of points of
 - order 2
 - order 3
 - order 4

on any real or rational elliptic curve.