From last time:
DEFINITION: A (real) elliptic curve is the solution set E in \mathbb{R}^{2} to an equation of the form $y^{2}=$ $x^{3}+a x+b$ for real constants $a, b \in \mathbb{R}$ that satisfy the technical assumption that $4 a^{3}+27 b^{2} \neq 0$. For an elliptic curve E we define $\bar{E}=E \cup\{\infty\}$, where ∞ is a formal symbol.

Intuitively, we think of ∞ as a point infinitely far up or down in the y-direction.
Definition (Operation on an elliptic curve): For an elliptic curve E, and points $P, Q \in E$ with $P \neq Q$, we set:
$P^{\vee}:=$ the reflection of P over the x-axis
$P \star Q:=R^{\vee}$, where R is the third point of intersection of the line between P and Q and E
$P \star P:=S^{\vee}$, where S is the other point of intersection of the tangent line to E at P and E.
THEOREM: There is a group structure on \bar{E} with operation \star, identity element ∞, and inverse $-\vee$.
(1) Points of low order ${ }^{1}$. Let $\bar{E}=E \cup\{\infty\}$ be a real elliptic curve the group law above.
(a) How can you identify the points of order 2 on \bar{E} geometrically? Mark them on each of your placemats. Note: They may not be labelled points.
(b) How can you identify the points of order 4 on \bar{E} geometrically? Mark them on each of your placemats. Note: They may not be labelled points.
(c) Points of order 3 on \bar{E} correspond to a special particular case of the group operation \star that we haven't discussed yet: if $3 P=\infty$ if and only if P is an inflection point. Discuss whether this rule is "morally consistent" with the rules above or if it is "totally out of left field".
(d) Mark the points of order 3 on each of your placemats. Note: They may not be labelled points.
(e) How can you identify the points of order 6 on \bar{E} geometrically? Mark them on each of your placemats. Note: They may not be labelled points.

THEOREM: If E is a real elliptic curve given by the equation $y^{2}=x^{3}+a x+b$ for rational numbers $a, b \in \mathbb{Q}$, then the set of rational points on E (along with the infinity point " ∞ ") form a group with operation \star, identity element ∞, and inverse $-{ }^{\vee}$. We denote this group by $E_{\mathbb{Q}}$.
(2) Explain how ${ }^{2}$ the theorem about the group structure on $\bar{E}_{\mathbb{Q}}$ above follows from the theorem about the group structure on \bar{E} (real elliptic curves).
(3) The equation $y^{2}=x^{3}+17$ has a rational solution $(-2,3)$. Use this solution and the group structure on $\bar{E}_{\mathbb{Q}}$ to come up with at least five more rational solutions.
(4) The equation $y^{2}=x^{3}+1$ has at least five easy rational solutions: $P=(-1,0), Q=(0,1)$, $Q^{\vee}=(0,-1), R=(2,3), R^{\vee}=(2,-3)$. Use the group structure on $\bar{E}_{\mathbb{Q}}$ to try to come up with more rational solutions.

[^0]DEFINITION: Let $p \geq 5$ be a prime. An elliptic curve over \mathbb{Z}_{p} is the solution set E_{p} in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ to an equation of the form $y^{2}=x^{3}+[a] x+[b]$ for real constants $[a],[b] \in \mathbb{Z}_{p}$ that satisfy the technical assumption that $[4][a]^{3}+[27][b]^{2} \neq 0$. For an elliptic curve E_{p} we define $\bar{E}_{p}=E_{p} \cup\{\infty\}$, where ∞ is a formal symbol.

THEOREM: There is a group structure on \bar{E}_{p} with operation \star, identity element ∞, and inverse $-\vee$ given by the same geometric rules as in the real case.
(5) The elliptic curve $\bar{E}_{5}: y^{2}=x^{3}-x+[1]$.
(a) Use trial and error to compute all of the points in \bar{E}_{5}.
(b) For $P=(0,1)$ and $Q=(1,1)$, compute $P \star Q$ and $2 P$.
(6) In this problem, we will prove that the elliptic curve $E: y^{2}=x^{3}+7$ has no integer solutions.
(a) Suppose that (a, b) is an integer solution. Show that a must be odd.
(b) Show that $b^{2}+1=(a+2)\left((a-1)^{2}+3\right)$.
(c) Show that there exists a prime $q \equiv 3(\bmod 4)$ that divides the integer in (b), and obtain a contradiction.
(7) Let $a, b \in \mathbb{R}$ be real numbers. Show that every solution point $P=(x, y)$ of the equation $y^{2}=x^{3}+a x+b$ has a well-defined tangent line (i.e., implicit differentiation yields a welldefined real or infinite "value" of $\frac{d y}{d x}$ at every point) if and only if $4 a^{3}+27 b^{2} \neq 0$.
(8) Use geometric and calculus considerations to give upper bounds on the number of points of

- order 2
- order 3
- order 4
on any real or rational elliptic curve.

[^0]: ${ }^{1}$ Recall: The order of an element g in a group G with identity 1 is the smallest integer n such that $g^{n}=1$, if such an n exists, and infinite otherwise.
 ${ }^{2}$ Hint: How do you compute $P \star Q$ algebraically?

