ElLIPTIC CURVES

DEFINITION: A (real) elliptic curve is the solution set E in \mathbb{R}^{2} to an equation of the form $y^{2}=x^{3}+a x+b$ for real constants $a, b \in \mathbb{R}$ that satisfy the technical assumption that $4 a^{3}+27 b^{2} \neq 0$. For an elliptic curve E we define $\bar{E}=E \cup\{\infty\}$, where ∞ is a formal symbol.

Intuitively, we think of ∞ as a point infinitely far up or down in the y-direction.
We write $f_{E}(x, y)=y^{2}-\left(x^{3}+a x+b\right)$ for the elliptic curve E as above, so

$$
E=\left\{(x, y) \in \mathbb{R}^{2} \mid f_{E}(x, y)=0\right\}
$$

Definition (Operation on an elliptic curve): For an elliptic curve E, and points $P, Q \in E$ with $P \neq Q$, we set:
$P^{\vee}:=$ the reflection of P over the x-axis
$P \star Q:=R^{\vee}$, where R is the third ${ }^{1}$ point of intersection of the line between P and Q and E.
THEOREM: There is a group structure on \bar{E} with operation \star, identity element ∞, and inverse ${ }^{\vee}$.
(1) Drawing the operations \star and $-{ }^{\vee}$:
(a) For each of the curves given, see if you can find labeled points P, Q, R such that $P \star Q=R$. Can you find all such triples?
(b) For each of the curves given, mark your own points and see if you can compute the operation \star.

Answers vary for different placemats and selected points.
(2) Explain why $P \star Q=Q \star P$.

The line between P and Q is the same as the line between Q and P.
(3) Compute $(A \star B) \star C$ and $A \star(B \star C)$ in the example below. How is this related to the Theorem above?

$A \star B=D$, and $D \star C=F$, while $B \star C=E$ and $A \star E=F$. Thus, $(A \star B) \star C=F=A \star(B \star C)$. This corresponds to the associativity of the operation.
(4) Let E be the elliptic curve given by the equation $y^{2}=x^{3}+2 x+4$.
(a) Verify that $P=(-1,1)$ and $Q=(0,2)$ are points in E.
(b) Compute $R=P \star Q$ and $S=Q \star R$.

For (a), plug in the values to check. For (b), we compute R by taking the line between P and Q, which is $y=x+2$, and plugging this into the equation to get $(x+2)^{2}=x^{3}+2 x+4$. This yields $0=x^{3}-x^{2}+2 x=x(x-2)(x+1)$. The roots $x=0$ and $x=-1$ correspond to P and Q, so the third point corresponds to $x=2$. Then $(2,4)$ is the third point on the line. We reflect to get $R=(2,-4)$.

We repeat the process with Q, R, to get $S=(7,19)$.
(5) The operation $-^{\vee}$:
(a) Explain algebraically why $P \in E$ implies $P^{\vee} \in E$, so $-{ }^{\vee}$ is a valid operation on E.
(b) For which points is $P=P^{\vee}$?
(c) Explain geometrically why $P=P^{\vee}$ implies the tangent line to E at P is vertical.
(a) If $P=\left(x_{0}, y_{0}\right) \in E$, so that $y_{0}^{2}=x_{0}^{3}+a x_{0}+b$, then $\left(-y_{0}\right)^{2}=x_{0}^{3}+a x_{0}+b$, so that $P^{\vee}=\left(x_{0},-y_{0}\right) \in E$.
(b) Points on the x-axis.
(c) Reflection over the x-axis reflects the tangent line as well. If the tangent line had nonzero slope m, then its reflection would have slope $-m \neq m$. The case of a horizontal tangent on the x-axis is also impossible, though it takes a little longer to argue geometrically, and we'll skip it for now.
(6) The doubling operation on an elliptic curve:
(a) Let E be an elliptic curve and $P, Q \in E$. What happens to the line between P and Q if P stays fixed and Q approaches P ?
(b) Use the previous part to come up with a definition for $2 P:=P \star P$.
(c) For each of the curves given, choose some points P and find $2 P$ geometrically.
(d) Let E be the elliptic curve given by the equation $y^{2}=x^{3}+2 x+1$ and $P=(0,1)$. Compute $2 P$, $3 P$, and $4 P$.
(a) The line approaches the tangent line to E at P.
(b) $2 P:=P \star P$ should be the reflection of the point Q that is on intersection of the tangent line at P and E.
(c) Answers vary.
(d) To compute $2 P$ we compute the tangent line to E at P. From calculus, this line is $y=x+1$. Plugging this into the original equation, we get $(x+1)^{2}=x^{3}+2 x+1$, so $0=x^{3}-x^{2}=$ $x^{2}(x-1)$. The double root $x=0$ corresponds to the point P, so the other point is with $x=1$, namely $(1,2)$. Thus $2 P=(1,-2)$. Continuing $3 P=(8,23)$, and $4 P=\left(\frac{-7}{16}, \frac{13}{64}\right)$.
(7) The group operation and ∞ : Let's agree that "the line between P and ∞ " is the vertical line through P and that "the reflection of ∞ over the x-axis is ∞. ."
(a) With the agreements above, explain why the definition of \star is consistent with $P \star \infty=\infty \star P=P$.
(b) Given an element P, according to the agreements above, what element Q solves $P \star Q=\infty$?
(c) Are your answers consistent with the Theorem above?
(a) To compute $P \star \infty$, we may be inclined to take the vertical line through P, and take the other intersection point, which is P^{\vee}, then reflect, to get P.
(b) If $P \star Q=\infty$, then Q is the point on the line between P and $\infty^{\vee}=\infty$, which is P^{\vee}.
(c) Yes.
(8) Well-definedness of \star :
(a) Consider the equation $y^{2}=-x^{2}+1$. Note that $-{ }^{\vee}$ makes sense on this curve. Take two points P, Q on this curve, and attempt the operation \star. What goes wrong?
(b) Consider the equation $y^{2}=\frac{1}{4}\left(x^{4}+1\right)$, depicted below. Take various combinations of points P, Q on this curve, and attempt the operation \star. What goes wrong?
(c) Draw a random squiggle that is symmetric over the x-axis. Take various combinations of points P, Q on this squiggle, and attempt the operation \star. What goes wrong?

(9) Well-definedness of \star continued:
(a) Let E be an elliptic curve, and $L=\{(x, y) \mid y=m x+b\}$ be a nonvertical line. Show that the x-coordinates of points in $L \cap E$ are exactly the zeros of $g_{E, L}(x):=f_{E}(x, m x+b)$.
(b) Show that $L \cap E$ has at most three points. Thus, for $P \neq Q \in E$, there is at most one other point on E and on the line between P and Q.
(c) Show that if $|L \cap E| \geq 2$, then either $g_{E, L}$ has three distinct roots, or else it has two roots, one of which has multiplicity two.

Lemma: The condition $4 a^{3}+27 b^{2} \neq 0$ guarantees that every point on E has a tangent line; i.e., implicit differentiation specifies a well-defined value (or infinity) for $\frac{d y}{d x}$ at each point.

Lemma: If $P=\left(x_{0}, y_{0}\right) \in E$ and L a (nonvertical) line through P, then $g_{E, L}(x)$ has a double root at x_{0} if and only if L is the tangent line to E at P.
(d) Use the Lemmas above to show that if $P \neq Q$ and L is the lime between P and Q, exactly one of the following happens:

- L intersects E in a third point (and no more).
- L is the tangent line to E at P and does not intersect E anywhere else.
- L is the tangent line to E at Q and does not intersect E anywhere else.

What should the value of $P \star Q$ be in each case?
(e) Prove the Lemmas above.

