DEFINITION: A triangular number is a natural number T_{n} that counts the number of dots in a triangular array with n elements along the base.

$T_{1}=1 \quad T_{2}=3$

$T_{3}=6$

$T_{4}=10$
(1) Explain why $T_{n}=1+2+\cdots+n$. Then find ${ }^{1}$ and prove a closed formula for the nth triangular number.

Going from T_{n} to T_{n+1}, we add one row of $n+1$ elements, so $T_{n+1}=T_{n}+(n+1)$, and the formula $T_{n}=1+2+\cdots+n$ is then clear. For the second, we can write

$$
\begin{aligned}
T_{n}+T_{n} & =(1+2+\cdots+n)+(n+(n-1)+\cdots+1) \\
& =(n+1)+\cdots+(n+1)=n(n+1),
\end{aligned}
$$

so $T_{n}=\frac{n(n+1)}{2}$.
(2) In this problem we will classify all square-triangular numbers: numbers that are simultaneously triangular numbers and squares.
(a) Set $T_{m}=n^{2}$. Complete the square on the left-hand side, and clear denominators. Write x and y for the squares ${ }^{2}$ appearing in the equation. What sort of equation in x and y do you get?
(b) Solve the equation in x and y. How is the integer solution set in the original equation in m and n related to the x and y equation?
(c) Use your work to write down the first four square-triangular numbers.
(a) We have $\frac{m(m+1)}{2}=n^{2}$, so $m^{2}+m=2 n^{2}$. Completing the square on the left gives

$$
\left(m+\frac{1}{2}\right)^{2}-\frac{1}{4}=2 n^{2}
$$

and clearing denominators,

$$
(2 m+1)^{2}-1=8 n^{2}
$$

Setting $x=2 m+1$ and $y=2 n$, we get the equation

$$
x^{2}-2 y^{2}=1
$$

a Pell's equation.
(b) The solutions (x, y) of $x^{2}-2 y^{2}=1$ come from coefficients of $x+y \sqrt{2}=(3+2 \sqrt{2})^{k}$ for $k \in \mathbb{N}$. Thus, if $T_{m}=n^{2}$ is a square-triangular number, $(2 m+1,2 n)=(x, y)$ comes from the coefficients of $(3+2 \sqrt{2})^{k}$ for $k \in \mathbb{N}$.
Conversely, given (x, y) such that $x+y \sqrt{2}=(3+2 \sqrt{2})^{k}$, we can write $(x, y)=(2 m+1,2 n)$ for some integers $m=\frac{x-1}{2}, n=\frac{y}{2}$ since x is odd and y is even: we can see this by induction,

[^0]since if x is odd and y is even, then $(x+y \sqrt{2})(3+2 \sqrt{2})=(3 x+4 y)+(3 y+2 x) \sqrt{2}$ has $3 x+4 y$ odd and $3 y+2 x$ even.
(c) The first four solutions of the Pell's equation above are $(3,2),(17,12),(99,70),(577,408)$. We then have $n=y / 2$, and the actual number is $n^{2}=y^{2} / 4$. We get the numbers: $1,36,1225,41616$.

DEFINITION: A pentagonal number is a natural number P_{n} that counts the number of dots in a pentagonal array (with a fixed corner) with n elements along the base.

(3) In this problem we will classify all square-pentagonal numbers: numbers that are simultaneously triangular numbers and squares.
(a) Find a formula for $P_{m}-P_{m-1}$. Use this and Problem (1) to give a closed formula for P_{m}.
(b) Set $P_{m}=n^{2}$. Complete the square on the left-hand side, and clear denominators. Write x and y for the squares appearing in the equation. What sort of equation in x and y do you get?
(c) Solve the equation in x and y. How is the integer solution set in the original equation in m and n related to the x and y equation? (Warning: This is more subtle than in the triangular case!)
(d) Use your work to write down the first three square-pentagonal numbers.
(a) $P_{m}-P_{m-1}$ corresponds to two sides of length m and one side of length $m-2$, so $3 m-2$. Then we get

$$
P_{m}=3(1+2+\cdots+m)-2 m=3 \frac{m(m+1)}{2}-2 m=\frac{3 m^{2}-m}{2}
$$

(b) We start with $\frac{3 m^{2}-m}{2}=n^{2}$, so $m^{2}-\frac{m}{3}=\frac{2 n^{2}}{3}$. Completing the square gives

$$
\left(m-\frac{1}{6}\right)^{2}-\frac{1}{36}=\frac{2 n^{2}}{3}
$$

and clearing denominators yields

$$
(6 m-1)^{2}-1=24 n^{2} .
$$

Set $x=6 m-1$ and $y=2 n$ to get

$$
x^{2}-6 y^{2}=1,
$$

a Pell's equation.
(c) We find $(x, y)=(5,2)$ as the smallest positive solution to the Pell's equation above, so the solutions (x, y) of $x^{2}-6 y^{2}=1$ come from coefficients of $x+y \sqrt{6}=(5+2 \sqrt{6})^{k}$ for $k \in \mathbb{N}$.

Thus, if $P_{m}=n^{2}$ is a square-pentagonal number, $(6 m-1,2 n)=(x, y)$ comes from the coefficients of $(5+2 \sqrt{6})^{k}$ for $k \in \mathbb{N}$.
To determine which values of k yield an x with $x \equiv 5(\bmod 6)$, and y even we compute that $(x+y \sqrt{6})(5+2 \sqrt{6})=(5 x+12 y)+(2 x+5 y) \sqrt{6}$. Since for $k=1, y$ is even, by induction, we see that y is even for all k. Furthermore, if $\left(x_{k}, y_{k}\right)$ is the k th solution, then $x_{k+1} \equiv 5 x_{k}(\bmod 6)$. Since $x_{1} \equiv 5(\bmod 6)$, we determine that $x_{k} \equiv 5(\bmod 6)$ exactly when k is odd.
(d) We compute the odd-indexed solutions to the Pell's equation $5+2 \sqrt{6},(5+2 \sqrt{6})^{3}=485+$ $198 \sqrt{6},(5+2 \sqrt{6})^{5}=47525+19402 \sqrt{6}$. Then we find that $n=y / 2$, and the actual number we seek is n^{2}, so we get $1,9801,94109401$ as the square-pentagonal numbers.

DEFINITION: A centered hexagonal number is a number of the form is a natural number H_{n} that counts the number of dots in a hexagonal array (with a fixed center) with n elements along the base.

(4) Give a formula for all centered hexagonal numbers. Then give a formula for all square-(centered) hexagonal numbers, and list the first three of these.

We have $H_{m}-H_{m-1}$ is given by six sides with $m-1$ elements, so is $6(m-1)$. Using the formula from (1) we get that the m th centered hexagonal number is $3 m^{2}-3 m+1$. Now we set $3 m^{2}-3 m+1=n^{2}$, and complete the square:

$$
\begin{aligned}
m^{2}-m+\frac{1}{3} & =\frac{n^{2}}{3} \\
\left(m-\frac{1}{2}\right)^{2}-\frac{1}{4}+\frac{1}{3} & =\frac{n^{2}}{3} \\
3(2 m-1)^{2}+1 & =4 n^{2},
\end{aligned}
$$

so setting $x=2 n, y=2 m-1$, we get the Pell's equation $x^{2}-3 y^{2}=1$.
The solutions (x, y) to this Pell's equation are given by $x_{k}+y_{k} \sqrt{3}=(2+\sqrt{3})^{k}$. However, we only obtain integer solutions $(m, n)=\left(\frac{y+1}{2}, \frac{x}{2}\right)$ to the original equation when x is even and y is odd. Multiplying out, we see that $x_{k+1}=2 x_{k}+3 y_{k} \equiv y_{k}(\bmod 2)$ and $y_{k+1}=x_{k}+2 y_{k} \equiv x_{k}$ $(\bmod 2)$. Since x_{1} is even and y_{1} is odd, we have x_{k} even and y_{k} odd exactly when k is odd.

Then we take $n^{2}=\left(x_{k} / 2\right)^{2}$ for $k=1,3,5$ to get $1,169,32761$.
(5) Find all numbers K that can be written in in the form

$$
K=1+2+\cdots+(m-1)=(m+1)+(m+2)+\cdots+n
$$

for some $m, n \in \mathbb{N}$. For example, the smallest such K is

$$
15=1+2+\cdots+5=7+8
$$

In particular, find the first three such numbers.
Given m, n like so, we have

$$
\begin{aligned}
\frac{m(m-1)}{2} & =\frac{n(n+1)}{2}-\frac{m(m+1)}{2} \\
2 m^{2} & =n^{2}+n \\
2 m^{2} & =\left(n+\frac{1}{2}\right)^{2}-\frac{1}{4} \\
2(2 m)^{2} & =(2 n+1)^{2}-1
\end{aligned}
$$

so setting $x=2 n+1$ and $y=2 m$, we get solutions to Pell's equation $x^{2}-2 y^{2}=1$. As above, we see that a solution (x, y) must have x odd and y even, so any solution to Pell's equation yields a solution (m, n) of the original; in particular,

$$
K=\frac{\frac{y}{2}\left(\frac{y}{2}-1\right)}{2}=\frac{y(y-2)}{8}
$$

From $y=12,70,408$, we get $K=15,595,20706$.
(6) Find all numbers K that can be written in in the form

$$
K=1+2+\cdots+m=(m+1)+(m+2)+\cdots+n
$$

for some $m, n \in \mathbb{N}$. For example, the two smallest such K are

$$
3=1+2=3 \quad \text { and } \quad 105=1+2+\cdots+14=15+16+\cdots+20 .
$$

[^0]: ${ }^{1}$ Hint: Write $T_{n}+T_{n}=(1+2+\cdots+n)+(n+(n-1)+\cdots+1)$.
 ${ }^{2}$ Suggestion: Write $8=2 \cdot 2^{2}$ and include the 2 from 2^{2} in y.

