DEFINITION: A triangular number is a natural number T_{n} that counts the number of dots in a triangular array with n elements along the base.

$T_{3}=6$
$T_{4}=10$
(1) Explain why $T_{n}=1+2+\cdots+n$. Then find ${ }^{1}$ and prove a closed formula for the nth triangular number.
(2) In this problem we will classify all square-triangular numbers: numbers that are simultaneously triangular numbers and squares.
(a) Set $T_{m}=n^{2}$. Complete the square on the left-hand side, and clear denominators. Write x and y for the squares ${ }^{2}$ appearing in the equation. What sort of equation in x and y do you get?
(b) Solve the equation in x and y. How is the integer solution set in the original equation in m and n related to the x and y equation?
(c) Use your work to write down the first four square-triangular numbers.

DEFINITION: A pentagonal number is a natural number P_{n} that counts the number of dots in a pentagonal array (with a fixed corner) with n elements along the base.

(3) In this problem we will classify all square-pentagonal numbers: numbers that are simultaneously triangular numbers and squares.
(a) Find a formula for $P_{m}-P_{m-1}$. Use this and Problem (1) to give a closed formula for P_{m}.
(b) Set $P_{m}=n^{2}$. Complete the square on the left-hand side, and clear denominators. Write x and y for the squares appearing in the equation. What sort of equation in x and y do you get?
(c) Solve the equation in x and y. How is the integer solution set in the original equation in m and n related to the x and y equation? (Warning: This is more subtle than in the triangular case!)
(d) Use your work to write down the first three square-pentagonal numbers.

[^0]DEFINITION: A centered hexagonal number is a number of the form is a natural number H_{n} that counts the number of dots in a hexagonal array (with a fixed center) with n elements along the base.

(4) Give a formula for all centered hexagonal numbers. Then give a formula for all square-(centered) hexagonal numbers, and list the first three of these.
(5) Find all numbers K that can be written in in the form

$$
K=1+2+\cdots+(m-1)=(m+1)+(m+2)+\cdots+n
$$

for some $m, n \in \mathbb{N}$. For example, the smallest such K is

$$
15=1+2+\cdots+5=7+8 .
$$

In particular, find the first three such numbers.
(6) Find all numbers K that can be written in in the form

$$
K=1+2+\cdots+m=(m+1)+(m+2)+\cdots+n
$$

for some $m, n \in \mathbb{N}$. For example, the two smallest such K are

$$
3=1+2=3 \quad \text { and } \quad 105=1+2+\cdots+14=15+16+\cdots+20 .
$$

[^0]: ${ }^{1}$ Hint: Write $T_{n}+T_{n}=(1+2+\cdots+n)+(n+(n-1)+\cdots+1)$.
 ${ }^{2}$ Suggestion: Write $8=2 \cdot 2^{2}$ and include the 2 from 2^{2} in y.

