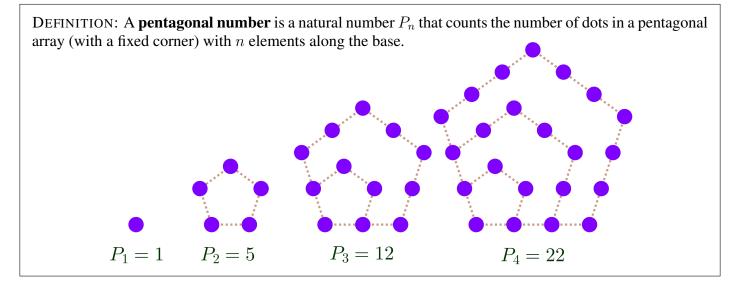


(1) Explain why $T_n = 1 + 2 + \cdots + n$. Then find¹ and prove a closed formula for the *n*th triangular number.

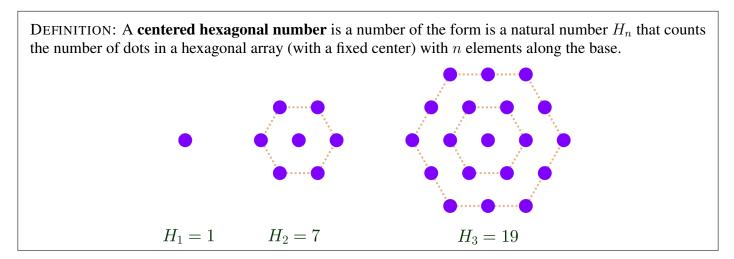
- (2) In this problem we will classify all square-triangular numbers: numbers that are simultaneously triangular numbers and squares.
 - (a) Set $T_m = n^2$. Complete the square on the left-hand side, and clear denominators. Write x and y for the squares² appearing in the equation. What sort of equation in x and y do you get?
 - (b) Solve the equation in x and y. How is the integer solution set in the original equation in m and n related to the x and y equation?
 - (c) Use your work to write down the first four square-triangular numbers.



- (3) In this problem we will classify all square-pentagonal numbers: numbers that are simultaneously triangular numbers and squares.
 - (a) Find a formula for $P_m P_{m-1}$. Use this and Problem (1) to give a closed formula for P_m .
 - (b) Set $P_m = n^2$. Complete the square on the left-hand side, and clear denominators. Write x and y for the squares appearing in the equation. What sort of equation in x and y do you get?
 - (c) Solve the equation in x and y. How is the integer solution set in the original equation in m and n related to the x and y equation? (Warning: This is more subtle than in the triangular case!)
 - (d) Use your work to write down the first three square-pentagonal numbers.

¹Hint: Write $T_n + T_n = (1 + 2 + \dots + n) + (n + (n - 1) + \dots + 1).$

²Suggestion: Write $8 = 2 \cdot 2^2$ and include the 2 from 2^2 in y.



- (4) Give a formula for all centered hexagonal numbers. Then give a formula for all square-(centered) hexagonal numbers, and list the first three of these.
- (5) Find all numbers K that can be written in the form

 $K = 1 + 2 + \dots + (m - 1) = (m + 1) + (m + 2) + \dots + n$

for some $m, n \in \mathbb{N}$. For example, the smallest such K is

 $15 = 1 + 2 + \dots + 5 = 7 + 8.$

In particular, find the first three such numbers.

(6) Find all numbers K that can be written in the form

$$K = 1 + 2 + \dots + m = (m + 1) + (m + 2) + \dots + n$$

for some $m, n \in \mathbb{N}$. For example, the two smallest such K are

3 = 1 + 2 = 3 and $105 = 1 + 2 + \dots + 14 = 15 + 16 + \dots + 20$.