Theorem (Existence of solutions to Pell's equation): Let D be a positive integer that is not a perfect square. Then the Pell's equation $x^{2}-D y^{2}=1$ has a positive solution.

Theorem (Solutions to Pell's equation are convergents): Let D be a positive integer that is not a perfect square. For every positive solution (a, b) to the Pell's equation $x^{2}-D y^{2}=1$, there is some $k \in \mathbb{Z}_{\geq 0}$ such that the ratio $\frac{a}{b}$ is a convergent C_{k} of the continued fraction of \sqrt{D}.

THEOREM (GOOD APPROXIMATIONS ARE CONVERGENTS): Let r be an irrational real number. If p, q are integers with $q>0$ such that $\left|r-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$, then there is some $k \in \mathbb{Z}_{\geq 0}$ such that $\frac{p}{q}$ is a convergent C_{k} of the continued fraction of r.
(1) Solving Pell's equation completely:
(a) Given the theorems above, devise a method to find the smallest positive solution to the Pell's equation $x^{2}-D y^{2}=1$.
(b) Apply your method for $D=2, D=3, D=10$, and $D=21$. Compare your results for $D=2$ and $D=3$ to what you found last time by trial and error.
(c) Give a formula for all positive solutions to Pell's equation for $D=10$ and $D=21$.
(a) Compute the continued fraction for \sqrt{D}, and test whether $p_{k}^{2}-D q_{k}^{2}=1$ for the sequence of convergents $C_{k}=\frac{p_{k}}{q_{k}}$. The first one that works is the smallest positive solution of Pell's equation.
(b) For $D=2$, the convergent $C_{1}=\frac{3}{2}$ yields the smallest solution $(3,2)$.

For $D=3$, the convergent $C_{1}=\frac{2}{1}$ yields the solution $(2,1)$.
For $D=10$, the convergent $C_{1}=\frac{19}{6}$ yields the solution $(19,6)$.
For $D=21$, the convergent $C_{5}=\frac{55}{12}$ yields the solution $(55,12)$.
(c) For $D=10$, the positive solutions $\left(x_{k}, y_{k}\right)$ are given by the coefficients of $x_{k}+y_{k} \sqrt{10}=$ $(19+6 \sqrt{10})^{k}$.
For $D=21$, the positive solutions $\left(x_{k}, y_{k}\right)$ are given by the coefficients of $x_{k}+y_{k} \sqrt{21}=$ $(55+12 \sqrt{21})^{k}$.
(2) Prove the Theorem (Solutions to Pell's equation are convergents) using the Theorem (Good approximations are convergents).

Suppose that (a, b) is a positive solution to the Pell's equation, so $a^{2}-D b^{2}=1$. Dividing through by b^{2},

$$
\left|\left(\frac{a}{b}\right)^{2}-D\right|<\frac{1}{b^{2}}
$$

Factoring the left-hand side, we get

$$
\left|\frac{a}{b}-\sqrt{D}\right|\left|\frac{a}{b}+\sqrt{D}\right|<\frac{1}{b^{2}}, \quad \text { so } \quad\left|\frac{a}{b}-\sqrt{D}\right|<\frac{1}{b^{2}\left|\frac{a}{b}+\sqrt{D}\right|}
$$

We claim that $\frac{a}{b}+\sqrt{D}>2$ for any solution to Pell's equation. Indeed, $D \geq 2$ implies $\sqrt{D}>1$ and $a>b$ implies $\frac{a}{b}>1$ as well. Thus, from the equations above, we have

$$
\left|\frac{a}{b}-\sqrt{D}\right|<\frac{1}{2 b^{2}} .
$$

By the Theorem (Good approximations are convergents), $\frac{a}{b}$ must be a convergent of \sqrt{D}.
(3) Proof of Theorem (Existence of solutions to Pell's equation):
(a) Use Dirichlet's approximation theorem to show that there are infinitely many pairs of integers $\left(x_{i}, y_{i}\right)$ such that $\left|x_{i}^{2}-D y_{i}^{2}\right|<2 \sqrt{D}+1$.
(b) Show that there is some integer m with $0<|m|<2 \sqrt{D}+1$ such that there are infinitely many pairs of integers $\left(x_{i}, y_{i}\right)$ with $x_{i}^{2}-D y_{i}^{2}=m$.
(c) Show that there is some integer m with $|m|<2 \sqrt{D}+1$ and $a, b \in \mathbb{Z}$ such that there are infinitely many pairs of integers $\left(x_{i}, y_{i}\right)$ with

$$
\left\{\begin{array}{l}
x_{i}^{2}-D y_{i}^{2}=m \\
x_{i} \equiv a \quad(\bmod |m|) \\
y_{i} \equiv b \quad(\bmod |m|)
\end{array} .\right.
$$

(d) Given $i \neq j$ and $x_{i}, x_{j}, y_{i}, y_{j}$ as in the previous part, show that $\frac{x_{j}+y_{j} \sqrt{D}}{x_{i}+y_{i} \sqrt{D}}$ is an element of $\mathbb{Z}[\sqrt{D}]$.
(e) Complete the proof of the Theorem.
(a) By Dirichlet's approximation theorem, there are infinitely many p / q such that

$$
\left|\frac{p}{q}-\sqrt{D}\right|<\frac{1}{q^{2}},
$$

given by the convergents of the continued fraction of \sqrt{D}. Then

$$
\left|\left(\frac{p}{q}\right)^{2}-D\right|=\left|\frac{p}{q}-\sqrt{D}\right|\left|\frac{p}{q}+\sqrt{D}\right|<\frac{\left|\frac{p}{q}+\sqrt{D}\right|}{q^{2}}
$$

so

$$
\left|p^{2}-D q^{2}\right|<\frac{p}{q}+\sqrt{D}
$$

Since $q \geq 1$, we have that $\frac{p}{q}-\sqrt{D} \leq 1$ by Dirichlet, so $\frac{p}{q}+\sqrt{D}<2 \sqrt{D}+1$. (Note that equality is impossible since \sqrt{D} is irrational.)
For p / q as above, taking $x_{i}=p, y_{i}=q$, we get infinitely many pairs of integers with $\left|x_{i}^{2}-D y_{i}^{2}\right|<2 \sqrt{D}+1$.
(b) There are finitely many integers m such that $|m|<2 \sqrt{D}+1$, so by the pigeonhole principle, there must be some m such that there are infinitely many $\left(x_{i}, y_{i}\right)$ with $x_{i}^{2}-$ $D y_{i}^{2}=m$.
(c) Take m as in the previous part; this m is nonzero since \sqrt{D} is irrational. For each element in the sequence obtained in the previous part, it corresponds to one element of $\mathbb{Z}_{|m|} \times \mathbb{Z}_{|m|}$ by taking the congruences

$$
\left\{\begin{array}{ll}
x_{i} \equiv a & (\bmod |m|) \\
y_{i} \equiv b & (\bmod |m|)
\end{array} .\right.
$$

Since $\mathbb{Z}_{|m|} \times \mathbb{Z}_{|m|}$ is finite, by the pigeonhole principle, there must be some element of $\mathbb{Z}_{|m|} \times \mathbb{Z}_{|m|}$ corresponding to infinitely many elements of the sequence. This gives the statement.
(d) Given $i \neq j$ and $x_{i}, x_{j}, y_{i}, y_{j}$ as in the previous part, note that

$$
N\left(x_{j}+y_{j} \sqrt{D}\right)=N\left(x_{i}+y_{i} \sqrt{D}\right)=m
$$

We can write
$\frac{x_{j}+y_{j} \sqrt{D}}{x_{i}+y_{i} \sqrt{D}}=\frac{1}{m}\left(x_{j}+y_{j} \sqrt{D}\right)\left(x_{i}-y_{i} \sqrt{D}\right)=\frac{1}{m}\left(\left(x_{i} x_{j}-y_{i} y_{j} D\right)+\left(x_{j} y_{i}-x_{i} y_{j}\right) \sqrt{D}\right)$.
We claim that

$$
x_{i} x_{j}-y_{i} y_{j} D \equiv x_{j} y_{i}-x_{i} y_{j} \equiv 0 \quad(\bmod |m|)
$$

Indeed,

$$
\begin{array}{ll}
x_{i} x_{j}-y_{i} y_{j} D \equiv a^{2}-b^{2} D \equiv m \equiv 0 & (\bmod |m|) \\
x_{j} y_{i}-x_{i} y_{j} \equiv a b-a b \equiv 0 & (\bmod |m|)
\end{array}
$$

This implies that the coefficients of $\left(x_{i} x_{j}-y_{i} y_{j} D\right)+\left(x_{j} y_{i}-x_{i} y_{j}\right) \sqrt{D}$ are divisible by m, so the number above is an element of $\mathbb{Z}[\sqrt{D}]$.
(e) In the previous part, we have found an element $\alpha \in \mathbb{Z}[\sqrt{D}]$ such that $\alpha\left(x_{i}+y_{i} \sqrt{D}\right)=$ $x_{j}+y_{j} \sqrt{D}$ and

$$
N\left(x_{j}+y_{j} \sqrt{D}\right)=N\left(x_{i}+y_{i} \sqrt{D}\right)=m \neq 0
$$

Thus, by the lemma, we much have $N(\alpha)=1$. This yields the solution we seek.
(4) Prove ${ }^{1}$ Theorem (Good approximations are convergents).

Suppose that p / q is not a convergent of r. If $q=q_{k}$ for some k but $p \neq p_{k}$, then

$$
\left|r-\frac{p}{q_{k}}\right| \geq\left|\left|\frac{p}{q_{k}}-\frac{p_{k}}{q_{k}}\right|-\left|r-\frac{p_{k}}{q_{k}}\right|\right| .
$$

Since $\left|\frac{p}{q_{k}}-\frac{p_{k}}{q_{k}}\right| \geq \frac{1}{q_{k}}$ and $\left|r-\frac{p_{k}}{q_{k}}\right|<\frac{1}{q_{k}^{2}}$ by Dirichlet approximation Theorem, the difference above is at least $\frac{q_{k}-1}{q_{k}^{2}}>\frac{1}{2 q_{k}^{2}}$, contradicting the hypotheses. Thus, we must have $q \neq q_{k}$ for any k, so $q_{k-1}<q<q_{k}$ for some k.

By hypothesis,

$$
\left|r-\frac{p}{q}\right|<\frac{1}{2 q^{2}}<\frac{1}{2 q q_{k-1}} .
$$

Following the proof of Problem set \#5 problem \#4, by replacing k by $k-1$ in steps (a)-(d), we see that

$$
\left|q_{k-1} r-p_{k-1}\right| \leq|q r-p|
$$

Since $|q r-p|<1 / 2 q$, by hypothesis, we get

$$
\left|r-\frac{p_{k-1}}{q_{k-1}}\right| \leq \frac{1}{2 q q_{k-1}}
$$

[^0]Then, by the triangle inequality,

$$
\left|\frac{p}{q}-\frac{p_{k-1}}{q_{k-1}}\right| \leq\left|r-\frac{p}{q}\right|+\left|r-\frac{p_{k-1}}{q_{k-1}}\right|<\frac{1}{2 q q_{k-1}}+\frac{1}{2 q q_{k-1}}=\frac{1}{q q_{k-1}} .
$$

Clearing denominators, this forces $\left|\frac{p}{q}-\frac{p_{k-1}}{q_{k-1}}\right|=0$. This contradicts the assumption that p / q is not a convergent of r.

[^0]: ${ }^{1}$ Hint: If not, we can assume $q_{k-1}<q<q_{k}$ for some k. In Problem set \#5 problem \#4, the same proof with $k-1$ in place of k in parts (a)-(d) shows that, under the same hypotheses, $|q r-p| \geq\left|q_{k-1} r-p_{k-1}\right|$. Then show that $\left|\frac{p}{q}-\frac{p_{k-1}}{q_{k-1}}\right|<\frac{1}{q q_{k-1}}$.

