PELL’S EQUATION AND CONTINUED FRACTIONS

THEOREM (EXISTENCE OF SOLUTIONS TO PELL’S EQUATION): Let D be a positive integer that is
not a perfect square. Then the Pell’s equation 22 — Dy? = 1 has a positive solution.

THEOREM (SOLUTIONS TO PELL’S EQUATION ARE CONVERGENTS): Let D be a positive integer
that is not a perfect square. For every positive solution (a, b) to the Pell’s equation 22 — Dy? = 1,
there is some k € Z>( such that the ratio 7 18 a convergent (), of the continued fraction of v D.

THEOREM (GOOD APPROXIMATIONS ARE CONVERGENTS): Let 7 be an irrational real number. If
p, q are integers with ¢ > 0 such that |r — §| < #, then there is some k € Zs( such that § isa
convergent C', of the continued fraction of r.

(1) Solving Pell’s equation completely:
(a) Given the theorems above, devise a method to find the smallest positive solution to the Pell’s
equation 22 — Dy? = 1.
(b) Apply your method for D = 2, D = 3, D = 10, and D = 21. Compare your results for

D =2 and D = 3 to what you found last time by trial and error.
(c) Give a formula for all positive solutions to Pell’s equation for D = 10 and D = 21.

(a) Compute the continued fraction for v/D, and test whether p? — Dq? = 1 for the sequence
of convergents C}, = Z—:. The first one that works is the smallest positive solution of
Pell’s equation.

(b) For D = 2, the convergent C; = % yields the smallest solution (3, 2).

For D = 3, the convergent C; = 2 yields the solution (2, 1).
For D = 10, the convergent C} = % yields the solution (19, 6).
For D = 21, the convergent C5 = 22 yields the solution (55,12).

(c) For D = 10, the positive solutions (z, yx )are given by the coefficients of xj, + /10 =
(19 + 61/10).

For D = 21, the positive solutions (x, yx )are given by the coefficients of xj, + yk\/Q_ =

(55 + 12v/21)*.

(2) Prove the Theorem (Solutions to Pell’s equation are convergents) using the Theorem (Good ap-
proximations are convergents).

Suppose that (a, b) is a positive solution to the Pell’s equation, so a®> — Db* = 1. Dividing
through by b2,
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Factoring the left-hand side, we get
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We claim that § + VD > 2 for any solution to Pell’s equation. Indeed, D > 2 implies
VD > 1and a > b implies 7 > 1 as well. Thus, from the equations above, we have
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By the Theorem (Good approximations are convergents), 3 must be a convergent of v D

(3) Proof of Theorem (Existence of solutions to Pell’s equation):
(a) Use Dirichlet’s approximation theorem to show that there are infinitely many pairs of inte-
gers (x;,7;) such that |22 — Dy?| < 2v/D + 1.
(b) Show that there is some integer m with 0 < |m| < 2v/D + 1 such that there are infinitely
many pairs of integers (z;,y;) with 2 — Dy? = m.
(c) Show that there is some integer m with |m| < 2¢/D 4 1 and a,b € Z such that there are
infinitely many pairs of integers (z;, y;) with

7 — Dy; =m
r;=a (mod |m|)
y; =b (mod |m|)
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(d) Given ¢ # j and z;,x;,y;,y; as in the previous part, show that
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(e) Complete the proof of the Theorem.

(a) By Dirichlet’s approximation theorem, there are infinitely many p/q such that
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given by the convergents of the continued fraction of v/ D. Then
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Since ¢ > 1, we have that 150 —vD <1 by Dirichlet, so § ++vD < 2v/D + 1. (Note

that equality is impossible since v/D is irrational.)
For p/q as above, taking x; = p, y; = ¢, we get infinitely many pairs of integers with
|22 — Dy?| < 2D + 1.

(b) There are finitely many integers m such that [m| < 2v/D + 1, so by the pigeonhole
principle, there must be some m such that there are infinitely many (z;,y;) with 27 —
Dy? = m.

(c) Take m as in the previous part; this m is nonzero since /D is irrational. For each
element in the sequence obtained in the previous part, it corresponds to one element of
L) X Ly by taking the congruences

{xi =a (mod |m|)

=0 (mod |m|)




Since Zjy,| X Zyn, is finite, by the pigeonhole principle, there must be some element of
L) X L) corresponding to infinitely many elements of the sequence. This gives the
statement.

(d) Given i # j and x;, z;, y;, y; as in the previous part, note that

We can write
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We claim that
vix; — Yy D = z;y —xy; =0 (mod |m)).

Indeed,

rixj —yiy; D =a®> —0*D=m =0 (mod |m|)

Ty — xy; = ab—ab =0 (mod |m|).
This implies that the coefficients of (x;2; — yiy; D) + (2;y; — 3y;)V/D are divisible by
m, so the number above is an element of Z[v/D].

(e) In the previous part, we have found an element o € Z[+/D] such that a(z; + y;v/D) =

Ij + y]\/ﬁ and

Thus, by the lemma, we much have N (a) = 1. This yields the solution we seek.

(4) Prove' Theorem (Good approximations are convergents).

Suppose that p/q is not a convergent of 7. If ¢ = ¢;, for some k but p # py, then
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Since i — % > i and [r — B&| < qig by Dirichlet approximation Theorem, the difference
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above is at least qz—gl > contradicting the hypotheses. Thus, we must have ¢ # ¢ for
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any k, S0 qu_1 < ¢ < Qi for some k.
By hypothesis,
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Following the proof of Problem set #5 problem #4, by replacing k by k£ —1 in steps (a)—(d),
we see that

@17 — pr—1] < |gr —pl.
Since |qr — p| < 1/2q, by hypothesis, we get
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Hint: If not, we can assume g,_1 < ¢ < gy, for some k. In Problem set #5 problem #4, the same proof with k£ — 1 in place

of k in parts (a)—(d) shows that, under the same hypotheses, |¢gr — p| > |qx—17 — px—1|- Then show that |§ - fl’:—zﬂ < qqkl_l .




Then, by the triangle inequality,
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Clearing denominators, this forces § - % = 0. This contradicts the assumption that p/q
is not a convergent of 7.




