
PELL’S EQUATION AND CONTINUED FRACTIONS

THEOREM (EXISTENCE OF SOLUTIONS TO PELL’S EQUATION): Let D be a positive integer that is
not a perfect square. Then the Pell’s equation x2 −Dy2 = 1 has a positive solution.

THEOREM (SOLUTIONS TO PELL’S EQUATION ARE CONVERGENTS): Let D be a positive integer
that is not a perfect square. For every positive solution (a, b) to the Pell’s equation x2 − Dy2 = 1,
there is some k ∈ Z≥0 such that the ratio a

b
is a convergent Ck of the continued fraction of

√
D.

THEOREM (GOOD APPROXIMATIONS ARE CONVERGENTS): Let r be an irrational real number. If
p, q are integers with q > 0 such that |r − p

q
| < 1

2q2
, then there is some k ∈ Z≥0 such that p

q
is a

convergent Ck of the continued fraction of r.

(1) Solving Pell’s equation completely:
(a) Given the theorems above, devise a method to find the smallest positive solution to the Pell’s

equation x2 −Dy2 = 1.
(b) Apply your method for D = 2, D = 3, D = 10, and D = 21. Compare your results for

D = 2 and D = 3 to what you found last time by trial and error.
(c) Give a formula for all positive solutions to Pell’s equation for D = 10 and D = 21.

(a) Compute the continued fraction for
√
D, and test whether p2k−Dq2k = 1 for the sequence

of convergents Ck = pk
qk

. The first one that works is the smallest positive solution of
Pell’s equation.

(b) For D = 2, the convergent C1 =
3
2

yields the smallest solution (3, 2).
For D = 3, the convergent C1 =

2
1

yields the solution (2, 1).
For D = 10, the convergent C1 =

19
6

yields the solution (19, 6).
For D = 21, the convergent C5 =

55
12

yields the solution (55, 12).
(c) For D = 10, the positive solutions (xk, yk)are given by the coefficients of xk+yk

√
10 =

(19 + 6
√
10)k.

For D = 21, the positive solutions (xk, yk)are given by the coefficients of xk+yk
√
21 =

(55 + 12
√
21)k.

(2) Prove the Theorem (Solutions to Pell’s equation are convergents) using the Theorem (Good ap-
proximations are convergents).

Suppose that (a, b) is a positive solution to the Pell’s equation, so a2 − Db2 = 1. Dividing
through by b2, ∣∣∣∣(ab)2 −D

∣∣∣∣ < 1

b2
.

Factoring the left-hand side, we get∣∣∣a
b
−
√
D
∣∣∣ ∣∣∣a
b
+
√
D
∣∣∣ < 1

b2
, so

∣∣∣a
b
−
√
D
∣∣∣ < 1

b2
∣∣∣ab +√D∣∣∣ .



We claim that a
b
+
√
D > 2 for any solution to Pell’s equation. Indeed, D ≥ 2 implies√

D > 1 and a > b implies a
b
> 1 as well. Thus, from the equations above, we have∣∣∣a

b
−
√
D
∣∣∣ < 1

2b2
.

By the Theorem (Good approximations are convergents), a
b

must be a convergent of
√
D.

(3) Proof of Theorem (Existence of solutions to Pell’s equation):
(a) Use Dirichlet’s approximation theorem to show that there are infinitely many pairs of inte-

gers (xi, yi) such that |x2i −Dy2i | < 2
√
D + 1.

(b) Show that there is some integer m with 0 < |m| < 2
√
D + 1 such that there are infinitely

many pairs of integers (xi, yi) with x2i −Dy2i = m.
(c) Show that there is some integer m with |m| < 2

√
D + 1 and a, b ∈ Z such that there are

infinitely many pairs of integers (xi, yi) with
x2i −Dy2i = m

xi ≡ a (mod |m|)
yi ≡ b (mod |m|)

.

(d) Given i 6= j and xi, xj, yi, yj as in the previous part, show that xj+yj
√
D

xi+yi
√
D

is an element of

Z[
√
D].

(e) Complete the proof of the Theorem.

(a) By Dirichlet’s approximation theorem, there are infinitely many p/q such that∣∣∣∣pq −√D
∣∣∣∣ < 1

q2
,

given by the convergents of the continued fraction of
√
D. Then∣∣∣∣∣

(
p

q

)2

−D

∣∣∣∣∣ =
∣∣∣∣pq −√D

∣∣∣∣ ∣∣∣∣pq +
√
D

∣∣∣∣ <
∣∣∣pq +√D∣∣∣

q2
,

so
|p2 −Dq2| < p

q
+
√
D.

Since q ≥ 1, we have that p
q
−
√
D ≤ 1 by Dirichlet, so p

q
+
√
D < 2

√
D + 1. (Note

that equality is impossible since
√
D is irrational.)

For p/q as above, taking xi = p, yi = q, we get infinitely many pairs of integers with
|x2i −Dy2i | < 2

√
D + 1.

(b) There are finitely many integers m such that |m| < 2
√
D + 1, so by the pigeonhole

principle, there must be some m such that there are infinitely many (xi, yi) with x2i −
Dy2i = m.

(c) Take m as in the previous part; this m is nonzero since
√
D is irrational. For each

element in the sequence obtained in the previous part, it corresponds to one element of
Z|m| × Z|m| by taking the congruences{

xi ≡ a (mod |m|)
yi ≡ b (mod |m|)

.



Since Z|m| × Z|m| is finite, by the pigeonhole principle, there must be some element of
Z|m| × Z|m| corresponding to infinitely many elements of the sequence. This gives the
statement.

(d) Given i 6= j and xi, xj, yi, yj as in the previous part, note that

N(xj + yj
√
D) = N(xi + yi

√
D) = m.

We can write
xj + yj

√
D

xi + yi
√
D

=
1

m
(xj + yj

√
D)(xi − yi

√
D) =

1

m
((xixj − yiyjD) + (xjyi − xiyj)

√
D).

We claim that

xixj − yiyjD ≡ xjyi − xiyj ≡ 0 (mod |m|).
Indeed,

xixj − yiyjD ≡ a2 − b2D ≡ m ≡ 0 (mod |m|)
xjyi − xiyj ≡ ab− ab ≡ 0 (mod |m|).

This implies that the coefficients of (xixj − yiyjD) + (xjyi − xiyj)
√
D are divisible by

m, so the number above is an element of Z[
√
D].

(e) In the previous part, we have found an element α ∈ Z[
√
D] such that α(xi + yi

√
D) =

xj + yj
√
D and

N(xj + yj
√
D) = N(xi + yi

√
D) = m 6= 0.

Thus, by the lemma, we much have N(α) = 1. This yields the solution we seek.

(4) Prove1 Theorem (Good approximations are convergents).

Suppose that p/q is not a convergent of r. If q = qk for some k but p 6= pk, then∣∣∣∣r − p

qk

∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣ pqk − pk
qk

∣∣∣∣− ∣∣∣∣r − pk
qk

∣∣∣∣∣∣∣∣ .
Since

∣∣∣ pqk − pk
qk

∣∣∣ ≥ 1
qk

and
∣∣∣r − pk

qk

∣∣∣ < 1
q2k

by Dirichlet approximation Theorem, the difference

above is at least qk−1
q2k

> 1
2q2k

, contradicting the hypotheses. Thus, we must have q 6= qk for
any k, so qk−1 < q < qk for some k.

By hypothesis, ∣∣∣∣r − p

q

∣∣∣∣ < 1

2q2
<

1

2qqk−1
.

Following the proof of Problem set #5 problem #4, by replacing k by k−1 in steps (a)–(d),
we see that

|qk−1r − pk−1| ≤ |qr − p|.
Since |qr − p| < 1/2q, by hypothesis, we get∣∣∣∣r − pk−1

qk−1

∣∣∣∣ ≤ 1

2qqk−1
.

1Hint: If not, we can assume qk−1 < q < qk for some k. In Problem set #5 problem #4, the same proof with k− 1 in place
of k in parts (a)–(d) shows that, under the same hypotheses, |qr− p| ≥ |qk−1r− pk−1|. Then show that |pq −

pk−1

qk−1
| < 1

qqk−1
.



Then, by the triangle inequality,∣∣∣∣pq − pk−1
qk−1

∣∣∣∣ ≤ ∣∣∣∣r − p

q

∣∣∣∣+ ∣∣∣∣r − pk−1
qk−1

∣∣∣∣ < 1

2qqk−1
+

1

2qqk−1
=

1

qqk−1
.

Clearing denominators, this forces
∣∣∣pq − pk−1

qk−1

∣∣∣ = 0. This contradicts the assumption that p/q
is not a convergent of r.


