Theorem (Existence of solutions to Pell's equation): Let D be a positive integer that is not a perfect square. Then the Pell's equation $x^{2}-D y^{2}=1$ has a positive solution.

Theorem (Solutions to Pell's equation are convergents): Let D be a positive integer that is not a perfect square. For every positive solution (a, b) to the Pell's equation $x^{2}-D y^{2}=1$, there is some $k \in \mathbb{Z}_{\geq 0}$ such that the ratio $\frac{a}{b}$ is a convergent C_{k} of the continued fraction of \sqrt{D}.

THEOREM (GOOD APPROXIMATIONS ARE CONVERGENTS): Let r be an irrational real number. If p, q are integers with $q>0$ such that $\left|r-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$, then there is some $k \in \mathbb{Z}_{\geq 0}$ such that $\frac{p}{q}$ is a convergent C_{k} of the continued fraction of r.
(1) Solving Pell's equation completely:
(a) Given the theorems above, devise a method to find the smallest positive solution to the Pell's equation $x^{2}-D y^{2}=1$.
(b) Apply your method for $D=2, D=3, D=10$, and $D=21$. Compare your results for $D=2$ and $D=3$ to what you found last time by trial and error.
(c) Give a formula for all positive solutions to Pell's equation for $D=10$ and $D=21$.
(2) Prove the Theorem (Solutions to Pell's equation are convergents) using the Theorem (Good approximations are convergents).
(3) Proof of Theorem (Existence of solutions to Pell's equation):
(a) Use Dirichlet's approximation theorem to show that there are infinitely many pairs of integers $\left(x_{i}, y_{i}\right)$ such that $\left|x_{i}^{2}-D y_{i}^{2}\right|<2 \sqrt{D}+1$.
(b) Show that there is some integer m with $0<|m|<2 \sqrt{D}+1$ such that there are infinitely many pairs of integers $\left(x_{i}, y_{i}\right)$ with $x_{i}^{2}-D y_{i}^{2}=m$.
(c) Show that there is some integer m with $|m|<2 \sqrt{D}+1$ and $a, b \in \mathbb{Z}$ such that there are infinitely many pairs of integers $\left(x_{i}, y_{i}\right)$ with

$$
\left\{\begin{array}{l}
x_{i}^{2}-D y_{i}^{2}=m \\
x_{i} \equiv a \quad(\bmod |m|) \\
y_{i} \equiv b \quad(\bmod |m|)
\end{array} .\right.
$$

(d) Given $i \neq j$ and $x_{i}, x_{j}, y_{i}, y_{j}$ as in the previous part, show that $\frac{x_{j}+y_{j} \sqrt{D}}{x_{i}+y_{i} \sqrt{D}}$ is an element of $\mathbb{Z}[\sqrt{D}]$.
(e) Complete the proof of the Theorem.
(4) Prove ${ }^{1}$ Theorem (Good approximations are convergents).

[^0]
[^0]: ${ }^{1}$ Hint: If not, we can assume $q_{k-1}<q<q_{k}$ for some k. In Problem set \#5 problem \#4, the same proof with $k-1$ in place of k in parts (a)-(d) shows that, under the same hypotheses, $|q r-p| \geq\left|q_{k-1} r-p_{k-1}\right|$. Then show that $\left|\frac{p}{q}-\frac{p_{k-1}}{q_{k-1}}\right|<\frac{1}{q q_{k-1}}$.

