
PELL’S EQUATION AND UNITS IN Z[
√
D]

DEFINITION: The equation x2 − Dy2 = 1 for some fixed positive integer D that is not a perfect
square, where the variables x, y range through integers is called a Pell’s equation. We say that a
solution (x0, y0) is a positive solution if x0, y0 are both positive integers. We say that one positive
solution (x0, y0) is smaller than another positive solution (x1, y1) if x0 < x1; equivalently, y0 < y1.

(1) Warmup with Pell’s equation:
(a) Verify that (9, 4) is a solution to Pell’s equation with D = 5.
(b) Fix some D. Show that if (x0, y0) is a solution to Pell’s equation, then (±x0,±y0) are

solutions to Pell’s equation with the same D.
(c) What two trivial solutions does every Pell’s equation have?
(d) Explain how to recover all solutions from just the positive solutions.

(a) 92 − 5 · 42 = 81− 5 · 16 = 1X.
(b) (±x0)2 −D(±y0)2 = x20 −Dy20 = 1.
(c) (±1, 0).
(d) By throwing in (±1, 0) and taking ± each coordinate.

(2) By trial and error find the smallest positive solutions to Pell’s equation with D = 2, D = 3,
and D = 5.

For D = 2 we find (3, 2). For D = 3 we find (2, 1), For D = 5 we find (9, 4).

(3) Suppose that D is a perfect square. Show that the equation x2 − Dy2 = 1 has no positive
solutions.

If D = d2 with d > 0, then x2 −Dy2 = (x− dy)(x+ dy). For any positive integers x, y,
we have x+ dy > 1, and x− dy ∈ Z, so the product cannot be 1.

DEFINITION: Let D be a positive integer that is not a perfect square. We define the quadratic
ring of D to be

Z[
√
D] := {a+ b

√
D | a, b ∈ Z} ⊆ R.

DEFINITION: For the quadratic ring Z[
√
D] we define the norm function

N : Z[
√
D]→ Z N(a+ b

√
D) = a2 − b2D.

Note that N(a+ b
√
D) = (a+ b

√
D)(a− b

√
D).

LEMMA: For the quadratic ring Z[
√
D] the norm function satisfies the multiplicative property

N(αβ) = N(α)N(β).

(4) Warmup with Z[
√
D]:



(a) Show1 that Z[
√
D] is a ring.

(b) Show that every element in Z[
√
D] has a unique expression in the form a+ b

√
D.

(a) We check the conditions for a subring: Let a+ b
√
D, c+ d

√
D ∈ Z[

√
D]. Then,

• 1 = 1 + 0
√
D ∈ Z[

√
D]

• (a+ b
√
D)− (c+ d

√
D) = (a− c) + (b− d)

√
D ∈ Z[

√
D], and

• (a+ b
√
D)(c+ d

√
D) = (ac+ bdD) + (ad+ bc)

√
D ∈ Z[

√
D].

(b) If a+ b
√
D = c+ d

√
D and (a, b) 6= (c, d), then a− c = (d− b)

√
D. If a 6= c, then

we must have b 6= d, so either way, b 6= d. Then
√
D = a−c

d−b
, which contradicts that√

D is irrational. Thus, a+ b
√
D = c+ d

√
D implies (a, b) = (c, d).

(5) Norms, units, and Pell’s equation:
(a) Prove the Lemma above.
(b) Show that an element of Z[

√
D] is a unit (has a multiplicative inverse) if and only if its

norm is ±1.
(c) Show that the set of units of Z[

√
D] forms a group under multiplication.

(d) Show that the set of elements a+ b
√
D ∈ Z[

√
D] such that (a, b) is a solution to the Pell’s

equation x2 −Dy2 = 1 forms a group under multiplication.

(a) Set α = a+ b
√
D, β = c+ d

√
D. Then αβ = (ac+ bdD) + (ad+ bc)

√
D so

N(αβ) = (ac+ bdD)2 − (ad+ bc)2D

= a2c2 + 2abcdD + b2d2D2 − a2 + d2D − 2abcdD − b2c2D
= a2c2 + b2d2D2 − a2d2D − b2c2D.

On the other hand,

N(α)N(β) = (a2 − b2D)(c2 − d2D) = a2c2 − a2d2D − b2c2D + b2d2D2.

(b) If α is a unit so αβ = 1 for some β, then

1 = N(1) = N(αβ) = N(α)N(β),

so N(α) is a unit in Z, hence is ±1. Conversely, if α = a + b
√
D and N(α) = ±1,

then (a+ b
√
D)(a− b

√
D) = ±1, so (a+ b

√
D)(±(a− b

√
D)) = 1, and α is a unit.

(c) The product of two elements of norm 1 has norm 1, by the lemma. The element 1 has
norm 1, which serves as the identity. By the previous part, an element of norm 1 has
an inverse, which must have norm 1 by the lemma.

THEOREM: Let D be a positive integer that is not a perfect square. Consider the Pell’s equation
x2 − Dy2 = 1. Let (a, b) be the smallest positive solution (assuming that some positive solution
exists). Then every positive solution (c, d) can be obtained by the rule

c+ d
√
D = (a+ b

√
D)k

for some positive integer k.

1Recall: to check that a subset of a ring is a subring, it suffices to show that it contains the multiplicative identity and is
closed under subtraction and multiplication.



(7) Use the Theorem above and your work from (2) to give a formula for all solutions to each of
the Pell’s equations
• x2 − 2y2 = 1
• x2 − 3y2 = 1
• x2 − 5y2 = 1

Then, for each of these, find the smallest three solutions.

For D = 2, the solutions are the coefficients of (3 + 2
√
2)k. The first three solutions are

(3, 2), (17, 12), and (99, 70).
For D = 3, the solutions are the coefficients of (2 +

√
3)k. The first three solutions are

(2, 1), (7, 4), and (26, 15).
For D = 5, the solutions are the coefficients of (9 + 4

√
5)k. The first three solutions are

(9, 4), (161, 72), and (2889, 1292).

(8) Proof of Theorem: Assume that (a, b) is the smallest positive solution to the Pell’s equation
x2 −Dy2 = 1.
(a) Show that pair of the form (c, d) where c+ d

√
D = (a+ b

√
D)k is a positive solution to

the same Pell’s equation.
(b) Suppose that (c, d) 6= (a, b) is a positive solution to Pell’s equation. Show that if

e+ f
√
D := (c+ d

√
D)(a− b

√
D),

then (e, f) is a solution to Pell’s equation.
(c) Show2 that, for e, f as in the previous part, e, f > 0 and e < c.
(d) Complete the proof of the Theorem.

(a) From the lemma, N((a + b
√
D)k) = N(a + b

√
D)k = 1 for all k, so all of these are

solutions.
(b) We have

N(e+ f
√
D) = N(c+ d

√
D)N(a− b

√
D) = N(c+ d

√
D)N(a+ b

√
D) = 1,

so it is a solution.
(c) From a2 − b2D = 1 > 0, we find that a > b

√
D, and similarly c > d

√
D. Then

ac > bdD so e = ac− bdD > 0. Since 0 < a < c, we have

a2d2D = a2(c2 − 1) = a2c2 − a2 > a2c2 − c2 = (a2 − 1)c2 = b2c2D,

so ad > bc, and f = ad− bc > 0. Finally, we have

c+ d
√
D = (c+ d

√
D)(a− b

√
D)(a+ b

√
D) = (e+ f

√
D)(a+ b

√
D),

so c = ae+ bfD > e.
(d) If not, let c+d

√
D be the smallest positive solution not of this form. Then e+f

√
D :=

(c+d
√
D)(a−b

√
D) is also not a power of a+b

√
D, since if e+f

√
D = (a+b

√
D)k,

then c + d
√
D = (e + f

√
D)(a + b

√
D) = (a + b

√
D)k+1, a contradiction. But by

the previous part, e+ f
√
D is a smaller positive solution; a contradiction.

2For e > 0, note that a > b
√
D and c > d

√
D. For f > 0, you might start with a2(c2 − 1) > (a2 − 1)c2. For e < c,

multiply the equation above by a+ b
√
D.



(9) Use3 your work from (7) to give a closed formula for all solutions to the same particular Pell’s
equations.

3Hint: The coefficients of (m+ n
√
2)(3 + 2

√
2) are the entries of

[
3 4
2 3

] [
m
n

]
.


