
CONTINUED FRACTIONS

DEFINITION: A finite continued fraction is an
expression of the form

a0 +
1

a1 +
1

a2+
1

...+ 1
an

for some integers a0 ∈ Z, a1, . . . , an ∈ Z>0.
We write [a0; a1, . . . , an] as shorthand for this.

An infinite continued fraction is an expression of
the form

a0 +
1

a1 +
1

a2+
1

a3+
1

...
for some integers a0 ∈ Z, a1, a2, a3, . . . ∈ Z>0.
We write [a0; a1, a2, . . . ] as shorthand for this.

By a continued fraction we mean either an infinite or finite continued fraction. We call the numbers ai
the partial quotients in the continued fraction.

(1) Evaluating finite continued fractions:

(a) Evaluate 2 +
1

13 + 1
2

.

(b) Evaluate [3; 2, 1, 4]
(c) Explain why every finite continued fraction evaluates to a rational number.

(a) 56
27

.
(b) 47

14
.

(c) A finite continued fraction is made out of integers from addition and division.

(2) Using the Euclidean algorithm to compute finite continued fractions:
(a) What type of computation is the computation below?

250 = 2 · 117 + 16

117 = 7 · 16 + 5

16 = 3 · 5 + 1

5 = 5 · 1

(b) How does one obtain
250

117
= 2 +

1
117
16

from the computation above?

(c) Repeat (b) to obtain a finite continued fraction expansion for 250
117

.
(d) Use the steps above to obtain a finite continued fraction expansion for 7

5
.

(e) Use the steps above to obtain a finite continued fraction expansion for 39
314

.
(f) What is the general formula for the continued fraction [a0; a1, . . . , an] for m/n in terms of the

Euclidean algorithm?

(a) Euclidean algorithm.
(b) Divide the first line by 117 and flip the last fraction.
(c) 250

117
= 2 + 1

7+ 1

3+1
5

.

(d) 7
5
= 1 + 1

2+ 1
2

.

(e) 39
314

= 1
8+ 1

19+1
2

.

(f) The ai’s are just the quotients in the Euclidean algorithm.



(3) Euclidean algorithm and continued fraction algorithm:
(a) In the computation from (2a) above, check that

2 =

⌊
250

117

⌋
and that

117

16
=

(
250

117
−
⌊
250

117

⌋)−1
.

(b) More generally, in the Euclidean algorithm
...

...
...

...

ui = qi · vi + ri (ui+1 = vi)

ui+1 = qi+1 · vi+1 + ri+1 (vi+1 = ri)

...
...

...
...

show that

qi =

⌊
ui
vi

⌋
and

ui+1

vi+1

=

(
ui
vi
−
⌊
ui
vi

⌋)−1
.

(a) X
(b) The formula for qi is the general formula in the division algorithm (since ui/vi−1 < bui/vic ≤

ui/vi implies vi > ui − bui/vicvi ≥ 0.) We then have
ui+1

vi+1

=
vi
ri

=
vi

ui − buivi cvi
=

1
ui
vi
− bui

vi
c
.

DEFINITION: Given an infinite continued fraction [a0; a1, a2, . . . ], the k-th convergent of the continued
fraction is the value Ck of the finite continued fraction [a0; a1, . . . , ak].

THEOREM (CONVERGENCE OF CONTINUED FRACTIONS): Every infinite continued fraction converges
to a real number; i.e., for any [a0; a1, a2, a3, . . .] with a0 ∈ Z and a1, a2, . . . ∈ Z>0, the sequence of
convergents C1, C2, C3, . . . converges. We call this limit the value of the infinite continued fraction.

CONTINUED FRACTION ALGORITHM: Given a real number r,
(I) Start with β0 := r and n := 0.

(II) Set an := bβnc.
(III) If an = βn, STOP; the continued fraction is [a0; a1, . . . , an].

Else, set βn+1 := (βn − an)−1, and return to Step (II).
If the algorithm does not terminate, the continued fraction is [a0; a1, a2, . . . ].

THEOREM (CORRECTNESS OF CONTINUED FRACTION ALGORITHM): For any real number r, the con-
tinued fraction obtained from the Continued Fraction Algorithm with input r converges to r.

PROPOSITION: Let r be a real number. The Continued Fraction Algorithm with input r terminates in
finitely many steps if and only if r is rational.

DIRICHLET APPROXIMATION THEOREM: Let r = [a0; a1, a2, a3, . . . ] be a real number. Then for every

convergent Ck =
pk
qk

(in lowest terms), we have
∣∣∣∣r − pk

qk

∣∣∣∣ < 1

q2k
.

In particular, if r is irrational, there are infinitely many rational numbers
p

q
such that

∣∣∣∣r − p

q

∣∣∣∣ < 1

q2
.



(4) Use the continued fraction algorithm to find the first four (n ≤ 3) partial quotients and convergents for√
2, and π. Can you find the whole continued fraction for either of these?

√
2 = [1; 2, 2, 2, . . . ] and 2’s forever, since βi =

√
2 + 1 for all i > 0, with C0, C1, C2, C3 =

1, 3/2, 7/5, 12/5. π = [3; 7, 15, 1, . . . ] and a mysterious pattern, with C0, C1, C2, C3 =
3, 22/7, 333/106, 355/113.

(5) Find1 the value of the continued fraction 1 +
1

1 + 1
1+ 1

...

.

We have L = 1 + 1/L, so L2 = L + 1. This has two roots 1±
√
5

2
. Since L > 0, we must have

L = 1+
√
5

2
, the golden ratio.

(6) Continued fraction algorithm and rational numbers.
(a) Explain why the continued fraction algorithm just creates a continued fraction in the same way the

Euclidean algorithm does as we did in problem (2).
(b) Explain why the Proposition above is true.

(a) This was the point of problem (3).
(b) If the algorithm terminates, then r has a finite continued fraction, and hence is rational. Con-

versely, if r is rational, the continued fraction algorithm follows the Euclidean algorithm and
after finitely many steps returns a finite continued fraction.

(7) Dirichlet Approximation Theorem.
(a) Let r be any real number. Explain why for any positive integer q, there is some integer p such that
|r − p

q
| < 1

q
. Conclude that |r − p

q
| < 1

q
is “not very impressive”.

(b) For r =
√
2, find all rational numbers p/q with |r − p

q
| < 1

q2
with q ≤ 6 and compare to the

list of convergents C0, C1, C2. What about |r − p
q
| < 1

2q2
? Conclude that |r − p

q
| < 1

q2
is “pretty

impressive”.
(c) Discuss π ≈ 22

7
in the context of the results above. Give a better approximation.

(a) Set p = br/qc.
(b) For the first, we just have C0, C1, C2 along with 2

1
and 4

3
. For the second, just C0, C1, C2. We

are impressed.
(c) This is a good approximation in the sense of Dirichlet Approximation Theroem, since it comes

from the continued fraction. π ≈ 355/113 is a very good approximation.

PROPOSITION: Let [a0; a1, a2, . . . ] be a continued fraction. Set
p0 := a0, p1 := a0a1 + 1, pk := akpk−1 + pk−2

q0 := 1, q1 := a1, qk := akqk−1 + qk−2.

Then,

(1) Ck =
pk
qk

for all k ≥ 0, and

(2) pkqk−1 − pk−1qk = (−1)k−1 for all k ≥ 1.

1Hint: This limit has a value L. Find an equation that L satisfies by recognizing L as a smaller piece of this continued fraction.



(8) Proof of convergence Theorem and Dirichlet Approximation Theorem.

(a) Use the Proposition above to show that Ck − Ck−1 =
(−1)k−1

qkqk−1
for all k ≥ 1.

(b) Use the Proposition above to show that Ck − Ck−2 =
(−1)kak
qkqk−2

for all k ≥ 2.

(c) Use (8b) to show that the sequence C0, C2, C4, . . . is increasing, that the sequence C1, C3, C5, . . .
is decreasing; use (8a) to show that C2k < C2`+1 for all k, `. Deduce that limk→∞C2k =
sup{C2k |k ∈ N} and lim`→∞C2`+1 = inf{C2`+1 |` ∈ N} both exist.

(d) Use (8a) to show that sup{C2k |k ∈ N} = inf{C2`+1 |` ∈ N}, and hence that limn→∞Cn exists
and is equal to both of these values. Thus, every continued fraction converges.

(e) Suppose that β is the value of our continued fraction. Use (8d) to show that |β−Cn| ≤ |Cn+1−Cn|,
and use (8a) to deduce Dirichlet’s Approximation.

(a)

Ck − Ck−1 =
pk
qk
− pk−1qk−1 =

pkqk−1 − pk−1qk
qkqk−1

=
(−1)k−1

qkqk−1
(b)

Ck − Ck−2 = Ck − Ck−1 + Ck−1 − Ck−2 =
(−1)k−1

qkqk−1
+

(−1)k−2

qk−1qk−2

= (−1)k−qk−2 + qk
qkqk−1qk−2

=
(−1)kakqk−1
qkqk−1qk−2

=
(−1)kak
qkqk−2

(c) From (8b), we have Ck − Ck−2 > 0 (so Ck > Ck−2) if k is even and Ck − Ck−2 < 0
(so Ck < Ck−2) if k is odd. Thus, the sequence C0, C2, C4, . . . is increasing and the sequence
C1, C3, C5, . . . is decreasing. By (8a), C2`+1−C2` > 0, soC2`+1 > C2`; if ` ≤ k, thenC2`+1 >
C2` > C2k; if ` ≥ k, then C2`+1 > C2k+1 > C2k. Then the sequence (C2k)

∞
k=1 is increasing

and bounded above (by, e.g., C1), and the sequence (C2`+1)
∞
`=1 decreasing and bounded below

(by, e.g., C0). By the monotone convergence theorem, these sequences converge to their sup
and inf, respectively.

(d) Suppose sup{C2k} < inf{C2`+1}, and left δ = inf{C2`+1} − sup{C2k}. Let 2n be an even
number larger than 1/δ. Then

C2n < sup{C2k} < inf{C2`+1} < C2n+1

impliesC2n+1−C2n > 1/(2n), but we also haveC2n+1−C2n = 1/(q2nq2n−1). Since q2n > 2n,
this is a contradiction. It follows that the sequence of convergents converges.

(e) If n is even, then we have Cn < sup{C2k} = β = inf{C2`+1} < Cn+1, and if n is odd, we
have Cn+1 < sup{C2k} = β = inf{C2`+1} < Cn. This shows that |β − Cn| ≤ |Cn+1 − Cn|.
Then from (8a), |Cn+1 − Cn| = 1/(qnqn+1) < 1/q2n.

(9) Prove the Proposition above.

We prove (1) by induction on k. We need two base cases, k = 0 and k = 1. For those, we have
[a0; ] = a0/1, and [a0; a1] = a0 +

1
a1

= a0a1+1
a1

. Now for the inductive step, suppose this holds
for continued fractions of length at most k. Then we can write Ck+1 = [a0; a1, . . . , ak, ak+1] =
[a0; a1, . . . , a

′
k], where a′k = ak + 1/ak+1. We apply the IH to the latter continued fraction:

Ck+1 =
a′kpk−1 + pk−2
a′kqk−1 + qk−2

=
(ak + 1/ak+1)pk−1 + pk−2
(ak + 1/ak+1)qk−1 + qk−2

=
ak+1(akpk−1 + pk−2) + pk−1
ak+1(akqk−1 + qk−2) + qk−1

=
ak+1pk + pk−1
ak+1qk + qk−1

=
pk+1

qk+1

,



completing the induction.
We prove (2) by induction too. For k = 1, we get

p1q0 − p0q1 = (a0a1 + 1) · 1− a0a1 = 1.

Assume the formula holds for k, so

pkqk−1 − pk−1qk = (−1)k−1.
Then

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1)

= pk−1qk − pkqk−1 = −(−1)k−1 = (−1)k
,

completing the inductive step.

(10) Proof of Correctness of Continued Fraction Algorithm:
If r is rational, the algorithm terminates and returns r, so we can assume that r is irrational and that

the algorithm does not terminate. Given r, let a0, a1, a2, a3, . . . and β0, β1, β2, . . . be the sequences
arising from the continued fraction algorithm.
(a) Explain why r = [a0; a1, . . . , ak, βk+1]. (Note, βk+1 is not an integer, but we can plug it into a

finite continued fraction anyway.)

(b) Explain why r =
βk+1pk + pk−1
βk+1qk + qk−1

where pk, qk, where pk, qk are the numbers coming from the

continued fraction (with an irrational number snuck in) [a0; a1, . . . , ak, βk+1] as in the Proposition
above.

(c) Show that |r − Ck| <
1

qkqk+1

for all k ≥ 1 and deduce the result.

(a) We argue by induction on k. Since β0 = r and [a0; ] means a0, the case k = 0 holds. If
r = [a0; a1, . . . , ak, βk+1], then by definition βk+2 = 1/(βk+1 − ak+1), so βk+1 = ak+1 +

1
βk+2

. Plugging this into the continued fraction setup, r = [a0; a1, . . . , ak, ak+1, βk+2]. This
completes the induction.

(b) The same proof as the Proposition works.
(c)

r − Ck =
βk+1pk + pk−1
βk+1qk + qk−1

− pk
qk

=
βk+1pkqk + pk−1qk − pkβk+1qk − pkqk−1

(βk+1qk + qk−1)qk

=
pk−1qk − pkqk−1
(βk+1qk + qk−1)qk

=
(−1)k

(βk+1qk + qk−1)qk
Since βk+1 > ak+1, we have

βk+1qk + qk−1 > ak+1qk + qk−1 = qk+1

so
|r − Ck| <

1

qk+1qk
<

1

q2k
.

(11) Prove the following theorem, which basically says that the convergents are the best approximations of
a rational number.
THEOREM: Let r be a real number, Ck = pk

qk
be the k-th convergent of r, and p

q
6= r be a rational

number. If q ≤ qk, then
∣∣∣∣r − p

q

∣∣∣∣ ≥ ∣∣∣∣r − pk
qk

∣∣∣∣.


