DEFINITION: A finite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{n}}}}}
$$

for some integers $a_{0} \in \mathbb{Z}, a_{1}, \ldots, a_{n} \in \mathbb{Z}_{>0}$.
We write $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ as shorthand for this.

An infinite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

for some integers $a_{0} \in \mathbb{Z}, a_{1}, a_{2}, a_{3}, \ldots \in \mathbb{Z}_{>0}$. We write $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ as shorthand for this.

By a continued fraction we mean either an infinite or finite continued fraction. We call the numbers a_{i} the partial quotients in the continued fraction.
(1) Evaluating finite continued fractions:
(a) Evaluate $2+\frac{1}{13+\frac{1}{2}}$.
(b) Evaluate $[3 ; 2,1,4]$
(c) Explain why every finite continued fraction evaluates to a rational number.
(a) $\frac{56}{27}$.
(b) $\frac{47}{14}$.
(c) A finite continued fraction is made out of integers from addition and division.
(2) Using the Euclidean algorithm to compute finite continued fractions:
(a) What type of computation is the computation below?

$$
\begin{aligned}
250 & =2 \cdot 117+16 \\
117 & =7 \cdot 16+5 \\
16 & =3 \cdot 5+1 \\
5 & =5 \cdot 1
\end{aligned}
$$

(b) How does one obtain $\frac{250}{117}=2+\frac{1}{\frac{117}{16}}$ from the computation above?
(c) Repeat (b) to obtain a finite continued fraction expansion for $\frac{250}{117}$.
(d) Use the steps above to obtain a finite continued fraction expansion for $\frac{7}{5}$.
(e) Use the steps above to obtain a finite continued fraction expansion for $\frac{39}{314}$.
(f) What is the general formula for the continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ for m / n in terms of the Euclidean algorithm?
(a) Euclidean algorithm.
(b) Divide the first line by 117 and flip the last fraction.
(c) $\frac{250}{117}=2+\frac{1}{7+\frac{1}{3+\frac{1}{5}}}$.
(d) $\frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}$.
(e) $\frac{39}{314}=\frac{1}{8+\frac{1}{19+\frac{1}{2}}}$.
(f) The a_{i} 's are just the quotients in the Euclidean algorithm.
(3) Euclidean algorithm and continued fraction algorithm:
(a) In the computation from (2a) above, check that

$$
2=\left\lfloor\frac{250}{117}\right\rfloor \text { and that } \frac{117}{16}=\left(\frac{250}{117}-\left\lfloor\frac{250}{117}\right\rfloor\right)^{-1}
$$

(b) More generally, in the Euclidean algorithm

$$
\begin{array}{rccr}
\vdots & \vdots & \vdots & \vdots \\
\\
u_{i} & =q_{i} \cdot v_{i}+r_{i} & \left(u_{i+1}=v_{i}\right) \\
u_{i+1} & =q_{i+1} \cdot v_{i+1}+r_{i+1} & \left(v_{i+1}=r_{i}\right)
\end{array}
$$

show that

$$
q_{i}=\left\lfloor\frac{u_{i}}{v_{i}}\right\rfloor \text { and } \frac{u_{i+1}}{v_{i+1}}=\left(\frac{u_{i}}{v_{i}}-\left\lfloor\frac{u_{i}}{v_{i}}\right\rfloor\right)^{-1} .
$$

(a) \checkmark
(b) The formula for q_{i} is the general formula in the division algorithm (since $u_{i} / v_{i}-1<\left\lfloor u_{i} / v_{i}\right\rfloor \leq$ u_{i} / v_{i} implies $v_{i}>u_{i}-\left\lfloor u_{i} / v_{i}\right\rfloor v_{i} \geq 0$.) We then have

$$
\frac{u_{i+1}}{v_{i+1}}=\frac{v_{i}}{r_{i}}=\frac{v_{i}}{u_{i}-\left\lfloor\frac{u_{i}}{v_{i}}\right\rfloor v_{i}}=\frac{1}{\frac{u_{i}}{v_{i}}-\left\lfloor\frac{u_{i}}{v_{i}}\right\rfloor} .
$$

DEFINITION: Given an infinite continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, the k-th convergent of the continued fraction is the value C_{k} of the finite continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$.

THEOREM (CONVERGENCE OF CONTINUED FRACTIONS): Every infinite continued fraction converges to a real number; i.e., for any $\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{1}, a_{2}, \ldots \in \mathbb{Z}_{>0}$, the sequence of convergents $C_{1}, C_{2}, C_{3}, \ldots$ converges. We call this limit the value of the infinite continued fraction.

Continued Fraction Algorithm: Given a real number r,
(I) Start with $\beta_{0}:=r$ and $n:=0$.
(II) Set $a_{n}:=\left\lfloor\beta_{n}\right\rfloor$.
(III) If $a_{n}=\beta_{n}$, STOP; the continued fraction is $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$.

Else, set $\beta_{n+1}:=\left(\beta_{n}-a_{n}\right)^{-1}$, and return to Step (II).
If the algorithm does not terminate, the continued fraction is $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$.
Theorem (Correctness of Continued Fraction Algorithm): For any real number r, the continued fraction obtained from the Continued Fraction Algorithm with input r converges to r.

Proposition: Let r be a real number. The Continued Fraction Algorithm with input r terminates in finitely many steps if and only if r is rational.

DIRICHLET APPROXIMATION THEOREM: Let $r=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ be a real number. Then for every convergent $C_{k}=\frac{p_{k}}{q_{k}}$ (in lowest terms), we have $\left|r-\frac{p_{k}}{q_{k}}\right|<\frac{1}{q_{k}^{2}}$.

In particular, if r is irrational, there are infinitely many rational numbers $\frac{p}{q}$ such that $\left|r-\frac{p}{q}\right|<\frac{1}{q^{2}}$.
(4) Use the continued fraction algorithm to find the first four $(n \leq 3)$ partial quotients and convergents for $\sqrt{2}$, and π. Can you find the whole continued fraction for either of these?
$\sqrt{2}=[1 ; 2,2,2, \ldots]$ and 2's forever, since $\beta_{i}=\sqrt{2}+1$ for all $i>0$, with $C_{0}, C_{1}, C_{2}, C_{3}=$ $1,3 / 2,7 / 5,12 / 5 . \pi=[3 ; 7,15,1, \ldots]$ and a mysterious pattern, with $C_{0}, C_{1}, C_{2}, C_{3}=$ $3,22 / 7,333 / 106,355 / 113$.
(5) Find ${ }^{1}$ the value of the continued fraction $1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}$.

We have $L=1+1 / L$, so $L^{2}=L+1$. This has two roots $\frac{1 \pm \sqrt{5}}{2}$. Since $L>0$, we must have $L=\frac{1+\sqrt{5}}{2}$, the golden ratio.
(6) Continued fraction algorithm and rational numbers.
(a) Explain why the continued fraction algorithm just creates a continued fraction in the same way the Euclidean algorithm does as we did in problem (2).
(b) Explain why the Proposition above is true.
(a) This was the point of problem (3).
(b) If the algorithm terminates, then r has a finite continued fraction, and hence is rational. Conversely, if r is rational, the continued fraction algorithm follows the Euclidean algorithm and after finitely many steps returns a finite continued fraction.
(7) Dirichlet Approximation Theorem.
(a) Let r be any real number. Explain why for any positive integer q, there is some integer p such that $\left|r-\frac{p}{q}\right|<\frac{1}{q}$. Conclude that $\left|r-\frac{p}{q}\right|<\frac{1}{q}$ is "not very impressive".
(b) For $r=\sqrt{2}$, find all rational numbers p / q with $\left|r-\frac{p}{q}\right|<\frac{1}{q^{2}}$ with $q \leq 6$ and compare to the list of convergents C_{0}, C_{1}, C_{2}. What about $\left|r-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$? Conclude that $\left|r-\frac{p}{q}\right|<\frac{1}{q^{2}}$ is "pretty impressive".
(c) Discuss $\pi \approx \frac{22}{7}$ in the context of the results above. Give a better approximation.
(a) Set $p=\lfloor r / q\rfloor$.
(b) For the first, we just have C_{0}, C_{1}, C_{2} along with $\frac{2}{1}$ and $\frac{4}{3}$. For the second, just C_{0}, C_{1}, C_{2}. We are impressed.
(c) This is a good approximation in the sense of Dirichlet Approximation Theroem, since it comes from the continued fraction. $\pi \approx 355 / 113$ is a very good approximation.

Proposition: Let $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction. Set

$$
\begin{array}{lll}
p_{0}:=a_{0}, & p_{1}:=a_{0} a_{1}+1, & p_{k}:=a_{k} p_{k-1}+p_{k-2} \\
q_{0}:=1, & q_{1}:=a_{1}, & q_{k}:=a_{k} q_{k-1}+q_{k-2} .
\end{array}
$$

Then,
(1) $C_{k}=\frac{p_{k}}{q_{k}}$ for all $k \geq 0$, and
(2) $p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k-1}$ for all $k \geq 1$.

[^0](8) Proof of convergence Theorem and Dirichlet Approximation Theorem.
(a) Use the Proposition above to show that $C_{k}-C_{k-1}=\frac{(-1)^{k-1}}{q_{k} q_{k-1}}$ for all $k \geq 1$.
(b) Use the Proposition above to show that $C_{k}-C_{k-2}=\frac{(-1)^{k} a_{k}}{q_{k} q_{k-2}}$ for all $k \geq 2$.
(c) Use (8b) to show that the sequence $C_{0}, C_{2}, C_{4}, \ldots$ is increasing, that the sequence $C_{1}, C_{3}, C_{5}, \ldots$ is decreasing; use (8a) to show that $C_{2 k}<C_{2 \ell+1}$ for all k, ℓ. Deduce that $\lim _{k \rightarrow \infty} C_{2 k}=$ $\sup \left\{C_{2 k} \mid k \in \mathbb{N}\right\}$ and $\lim _{\ell \rightarrow \infty} C_{2 \ell+1}=\inf \left\{C_{2 \ell+1} \mid \ell \in \mathbb{N}\right\}$ both exist.
(d) Use (8a) to show that $\sup \left\{C_{2 k} \mid k \in \mathbb{N}\right\}=\inf \left\{C_{2 \ell+1} \mid \ell \in \mathbb{N}\right\}$, and hence that $\lim _{n \rightarrow \infty} C_{n}$ exists and is equal to both of these values. Thus, every continued fraction converges.
(e) Suppose that β is the value of our continued fraction. Use (8d) to show that $\left|\beta-C_{n}\right| \leq\left|C_{n+1}-C_{n}\right|$, and use (8a) to deduce Dirichlet's Approximation.
(a)
$$
C_{k}-C_{k-1}=\frac{p_{k}}{q_{k}}-p_{k-1} q_{k-1}=\frac{p_{k} q_{k-1}-p_{k-1} q_{k}}{q_{k} q_{k-1}}=\frac{(-1)^{k-1}}{q_{k} q_{k-1}}
$$
(b)
\[

$$
\begin{aligned}
C_{k}-C_{k-2} & =C_{k}-C_{k-1}+C_{k-1}-C_{k-2}=\frac{(-1)^{k-1}}{q_{k} q_{k-1}}+\frac{(-1)^{k-2}}{q_{k-1} q_{k-2}} \\
& =(-1)^{k} \frac{-q_{k-2}+q_{k}}{q_{k} q_{k-1} q_{k-2}}=\frac{(-1)^{k} a_{k} q_{k-1}}{q_{k} q_{k-1} q_{k-2}}=\frac{(-1)^{k} a_{k}}{q_{k} q_{k-2}}
\end{aligned}
$$
\]

(c) From (8b), we have $C_{k}-C_{k-2}>0$ (so $C_{k}>C_{k-2}$) if k is even and $C_{k}-C_{k-2}<0$ (so $C_{k}<C_{k-2}$) if k is odd. Thus, the sequence $C_{0}, C_{2}, C_{4}, \ldots$ is increasing and the sequence $C_{1}, C_{3}, C_{5}, \ldots$ is decreasing. By (8a), $C_{2 \ell+1}-C_{2 \ell}>0$, so $C_{2 \ell+1}>C_{2 \ell}$; if $\ell \leq k$, then $C_{2 \ell+1}>$ $C_{2 \ell}>C_{2 k}$; if $\ell \geq k$, then $C_{2 \ell+1}>C_{2 k+1}>C_{2 k}$. Then the sequence $\left(C_{2 k}\right)_{k=1}^{\infty}$ is increasing and bounded above (by, e.g., C_{1}), and the sequence $\left(C_{2 \ell+1}\right)_{\ell=1}^{\infty}$ decreasing and bounded below (by, e.g., C_{0}). By the monotone convergence theorem, these sequences converge to their sup and inf, respectively.
(d) Suppose $\sup \left\{C_{2 k}\right\}<\inf \left\{C_{2 \ell+1}\right\}$, and left $\delta=\inf \left\{C_{2 \ell+1}\right\}-\sup \left\{C_{2 k}\right\}$. Let $2 n$ be an even number larger than $1 / \delta$. Then

$$
C_{2 n}<\sup \left\{C_{2 k}\right\}<\inf \left\{C_{2 \ell+1}\right\}<C_{2 n+1}
$$

implies $C_{2 n+1}-C_{2 n}>1 /(2 n)$, but we also have $C_{2 n+1}-C_{2 n}=1 /\left(q_{2 n} q_{2 n-1}\right)$. Since $q_{2 n}>2 n$, this is a contradiction. It follows that the sequence of convergents converges.
(e) If n is even, then we have $C_{n}<\sup \left\{C_{2 k}\right\}=\beta=\inf \left\{C_{2 \ell+1}\right\}<C_{n+1}$, and if n is odd, we have $C_{n+1}<\sup \left\{C_{2 k}\right\}=\beta=\inf \left\{C_{2 \ell+1}\right\}<C_{n}$. This shows that $\left|\beta-C_{n}\right| \leq\left|C_{n+1}-C_{n}\right|$. Then from (8a), $\left|C_{n+1}-C_{n}\right|=1 /\left(q_{n} q_{n+1}\right)<1 / q_{n}^{2}$.
(9) Prove the Proposition above.

We prove (1) by induction on k. We need two base cases, $k=0$ and $k=1$. For those, we have $\left[a_{0} ;\right]=a_{0} / 1$, and $\left[a_{0} ; a_{1}\right]=a_{0}+\frac{1}{a_{1}}=\frac{a_{0} a_{1}+1}{a_{1}}$. Now for the inductive step, suppose this holds for continued fractions of length at most k. Then we can write $C_{k+1}=\left[a_{0} ; a_{1}, \ldots, a_{k}, a_{k+1}\right]=$ $\left[a_{0} ; a_{1}, \ldots, a_{k}^{\prime}\right]$, where $a_{k}^{\prime}=a_{k}+1 / a_{k+1}$. We apply the IH to the latter continued fraction:

$$
\begin{aligned}
C_{k+1} & =\frac{a_{k}^{\prime} p_{k-1}+p_{k-2}}{a_{k}^{\prime} q_{k-1}+q_{k-2}}=\frac{\left(a_{k}+1 / a_{k+1}\right) p_{k-1}+p_{k-2}}{\left(a_{k}+1 / a_{k+1}\right) q_{k-1}+q_{k-2}} \\
& =\frac{a_{k+1}\left(a_{k} p_{k-1}+p_{k-2}\right)+p_{k-1}}{a_{k+1}\left(a_{k} q_{k-1}+q_{k-2}\right)+q_{k-1}}=\frac{a_{k+1} p_{k}+p_{k-1}}{a_{k+1} q_{k}+q_{k-1}}=\frac{p_{k+1}}{q_{k+1}},
\end{aligned}
$$

completing the induction.
We prove (2) by induction too. For $k=1$, we get

$$
p_{1} q_{0}-p_{0} q_{1}=\left(a_{0} a_{1}+1\right) \cdot 1-a_{0} a_{1}=1
$$

Assume the formula holds for k, so

$$
p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k-1}
$$

Then

$$
\begin{aligned}
p_{k+1} q_{k}-p_{k} q_{k+1} & =\left(a_{k+1} p_{k}+p_{k-1}\right) q_{k}-p_{k}\left(a_{k+1} q_{k}+q_{k-1}\right) \\
& =p_{k-1} q_{k}-p_{k} q_{k-1}=-(-1)^{k-1}=(-1)^{k}
\end{aligned}
$$

completing the inductive step.
(10) Proof of Correctness of Continued Fraction Algorithm:

If r is rational, the algorithm terminates and returns r, so we can assume that r is irrational and that the algorithm does not terminate. Given r, let $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ and $\beta_{0}, \beta_{1}, \beta_{2}, \ldots$ be the sequences arising from the continued fraction algorithm.
(a) Explain why $r=\left[a_{0} ; a_{1}, \ldots, a_{k}, \beta_{k+1}\right]$. (Note, β_{k+1} is not an integer, but we can plug it into a finite continued fraction anyway.)
(b) Explain why $r=\frac{\beta_{k+1} p_{k}+p_{k-1}}{\beta_{k+1} q_{k}+q_{k-1}}$ where p_{k}, q_{k}, where p_{k}, q_{k} are the numbers coming from the continued fraction (with an irrational number snuck in) $\left[a_{0} ; a_{1}, \ldots, a_{k}, \beta_{k+1}\right]$ as in the Proposition above.
(c) Show that $\left|r-C_{k}\right|<\frac{1}{q_{k} q_{k+1}}$ for all $k \geq 1$ and deduce the result.
(a) We argue by induction on k. Since $\beta_{0}=r$ and $\left[a_{0} ;\right]$ means a_{0}, the case $k=0$ holds. If $r=\left[a_{0} ; a_{1}, \ldots, a_{k}, \beta_{k+1}\right]$, then by definition $\beta_{k+2}=1 /\left(\beta_{k+1}-a_{k+1}\right)$, so $\beta_{k+1}=a_{k+1}+$ $\frac{1}{\beta_{k+2}}$. Plugging this into the continued fraction setup, $r=\left[a_{0} ; a_{1}, \ldots, a_{k}, a_{k+1}, \beta_{k+2}\right]$. This completes the induction.
(b) The same proof as the Proposition works.
(c)

$$
\begin{aligned}
r-C_{k} & =\frac{\beta_{k+1} p_{k}+p_{k-1}}{\beta_{k+1} q_{k}+q_{k-1}}-\frac{p_{k}}{q_{k}} \\
& =\frac{\beta_{k+1} p_{k} q_{k}+p_{k-1} q_{k}-p_{k} \beta_{k+1} q_{k}-p_{k} q_{k-1}}{\left(\beta_{k+1} q_{k}+q_{k-1}\right) q_{k}} \\
& =\frac{p_{k-1} q_{k}-p_{k} q_{k-1}}{\left(\beta_{k+1} q_{k}+q_{k-1}\right) q_{k}}=\frac{(-1)^{k}}{\left(\beta_{k+1} q_{k}+q_{k-1}\right) q_{k}}
\end{aligned}
$$

Since $\beta_{k+1}>a_{k+1}$, we have

$$
\beta_{k+1} q_{k}+q_{k-1}>a_{k+1} q_{k}+q_{k-1}=q_{k+1}
$$

so

$$
\left|r-C_{k}\right|<\frac{1}{q_{k+1} q_{k}}<\frac{1}{q_{k}^{2}}
$$

(11) Prove the following theorem, which basically says that the convergents are the best approximations of a rational number.
THEOREM: Let r be a real number, $C_{k}=\frac{p_{k}}{q_{k}}$ be the k-th convergent of r, and $\frac{p}{q} \neq r$ be a rational number. If $q \leq q_{k}$, then $\left|r-\frac{p}{q}\right| \geq\left|r-\frac{p_{k}}{q_{k}}\right|$.

[^0]: ${ }^{1}$ Hint: This limit has a value L. Find an equation that L satisfies by recognizing L as a smaller piece of this continued fraction.

